An aluminum rod 0.500 m in length and with a cross sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 3(H) K. (a) If one-halt of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool, (b) If the circular surface of the upper end of the rod is maintained at 300 K. what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal
(a)
The volume of helium boil off by the time the inserted half cools is
Answer to Problem 20.61AP
The volume of helium boil off by the time the inserted half cools to
Explanation of Solution
Given info: The length of the aluminum rod is
Write the expression for the mass of the substance.
Here,
The expression for the volume of the rod is,
Here,
Substitute
For the mass of the aluminum rod:
Substitute
Thus, the mass of the aluminum rod is
For the mass of the helium:
Substitute
Here,
Write the expression for the amount of heat lost by the aluminum rod due to the change in temperature.
Here,
Substitute
Thus, the heat lost by the aluminum rod is
Write the expression for the heat gained by the helium.
Here,
Substitute
From the law of the conservation of energy, the heat lost is equal to the heat gained.
Write the expression for the heat lost by the aluminum rod is equal to the heat gained by the helium.
Substitute
Thus, the volume of helium boil off by the time the inserted half cools to
Conclusion:
Therefore, the volume of helium boil off by the time the inserted half cools to
(b)
The boil off rate of liquid helium when the lower half reached
Answer to Problem 20.61AP
The boil off rate of liquid helium when the lower half reached
Explanation of Solution
Given info: The length of the aluminum rod is
Write the expression for the rate at which energy is supplied to the rod.
Here,
Substitute
Thus, the rate at which energy is supplied to the rod is
Write the expression for the boil off rate of liquid helium after the lower half reaches
Substitute
Conclusion:
Therefore, the boil off rate of liquid helium when the lower half reached
Want to see more full solutions like this?
Chapter 20 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the volume increases from 1.00 m3 to 3.00 m3 and 12.5 kJ is transferred to the gas by heat, what are (a) the change in its internal energy and (b) its final temperature?arrow_forwardOne of a dilute diatomic gas occupying a volume of 10.00 L expands against a constant pressure of 2.000 atm when it is slowly heated. If the temperature of the gas rises by 10.00 K and 400.0 J of heat are added in the process, what is its final volume?arrow_forwardConsider the latent heat of fusion and the latent heat of vaporization for H2O, 3.33 105 J/kg and 2.256 106 J/kg, respectively. How much heat is needed to a. melt 2.00 kg of ice and b. vaporize 2.00 kg of water? Assume the temperatures of the ice and steam are at the melting point and vaporization point, respectively. (a). UsingEq21.9, Q = mLF = (2.00 kg) (3.33l05 J/kg) = 6.66105 J (b).UsingEq21.10. Q = mLV = (2.00kg) (2.256106 J/kg) = 14.51106 Jarrow_forward
- The height of the Washington Monument is measured to be 170.00 m on a day when the temperature is 35.0 . What will its height be on a day when the temperature falls to -10.0 ? Although the monument is made of limestone, assume that its coefficient of thermal expansion is the same as that of marble. Give your answer to five significant figures.arrow_forwardWhat is the internal energy of 6.00 mol of an ideal monatomic gas at 200 ?arrow_forwardA sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P17.68). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state. (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A B, B C, and C A. Describe how to carry out each process experimentally. (f) Find Q, W, and Eint for each of the processes. (g) For the whole cycle A B C A, find Q, W, and Eint. Figure P17.68arrow_forward
- (a) The inside of a hollow cylinder is maintained at a temperature Ta, and the outside is at a lower temperature, Tb (Fig. P19.45). The wall of the cylinder has a thermal conductivity k. Ignoring end effects, show that the rate of energy conduction from the inner surface to the outer surface in the radial direction is dQdt=2Lk[TaTbln(b/a)] Suggestions: The temperature gradient is dT/dr. A radial energy current passes through a concentric cylinder of area 2rL. (b) The passenger section of a jet airliner is in the shape of a cylindrical tube with a length of 35.0 m and an inner radius of 2.50 m. Its walls are lined with an insulating material 6.00 cm in thickness and having a thermal conductivity of 4.00 105 cal/s cm C. A heater must maintain the interior temperature at 25.0C while the outside temperature is 35.0C. What power must be supplied to the heater? Figure P19.45arrow_forwardA house has well-insulated walls. It contains a volume of 90 m3 of air at 315 K. (a) Consider heating it at constant pressure. Calculate the energy required to increase the temperature of this diatomic ideal gas by 1.4°C. (b) If this energy could be used to lift an object of mass m through a height of 2.3 m, what is the value of m?arrow_forwardSpecific heats can be measured in a drop calorimeter in which a heated sample is dropped into the calorimeter and the final temperature is measured. When 40.0 g of a certain metal at 75.0 oC is added to 25.0 g of water (with Cp=4.184 J/[g oC]) at 10.0 oC in an insulated container, the final temperature is 20.0 oC. (A) Find the specific heat capacity of the metal. (B) How much heat flowed from the metal to the water.arrow_forward
- A cylinder contains 3.00 mol of helium gas at a temperature of 300 K. (A) If the gas is heated at constant volume, how much energy must be transferred by heat to the gas for its temperature to increase to 500 K?arrow_forwardThe mass of a monoatomic gas can be computed from its specific heat at constant volume cy. (Note that this is not Cy.) Take Cy = 0.073 cal/g C° for a gas and calculate (a) the mass of its atom and (b) the molar mass. (a) Number i Units Units (b) Numberarrow_forward(a) At 20 °C the volume of a copper sphere is 40 cm³. The coefficient of linear expansion of copper is 24 x 10-6 K-1. If the final volume is 40.5 cm3, what is the final temperature of the copper sphere? (b) Using the first law of thermodynamics explain with appropriate equation how does (i) internal energy (ii) work done, changes during the adiabatic expansion.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning