A 15.0-kg block of ice at 0.0°C melts to liquid water at 0. 0°C inside a large room at 20.0°C. Treat the ice and the room as an isolated system, and assume that the room is large enough for its temperature change to be ignored. (a) Is the melting of the ice reversible or irreversible? Explain, using simple physical reasoning without resorting to any equations. (b) Calculate the net entropy change of the system during this process. Explain whether or not this result is consistent with your answer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers with Modern Physics
College Physics: A Strategic Approach (3rd Edition)
Introduction to Electrodynamics
Lecture- Tutorials for Introductory Astronomy
An Introduction to Thermal Physics
College Physics: A Strategic Approach (4th Edition)
- When a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forwardAn ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the volume increases from 1.00 m3 to 3.00 m3 and 12.5 kJ is transferred to the gas by heat, what are (a) the change in its internal energy and (b) its final temperature?arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forward
- A certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forwardThe insulated cylinder shown below is closed at both ends and contains an insulating piston that is flee to move on frictionless bearings. The piston divides the chamber into two compartments containing gases A and B. Originally, each compartment has a volume of 5.0102 m3 and contains a monatomic ideal gas at a temperature of and a pressure of 1.0 atm. (a) How many moles of gas are in each compartment? (b) Heat Q is slowly added to A so that it expands and B is compressed until the pressure of both gases is 3.0 atm. Use the fact that the compression of B is adiabatic to determine the final volume of both gases. (c) What are their final temperatures? (d) What is the value of Q?arrow_forwardConsider the latent heat of fusion and the latent heat of vaporization for H2O, 3.33 105 J/kg and 2.256 106 J/kg, respectively. How much heat is needed to a. melt 2.00 kg of ice and b. vaporize 2.00 kg of water? Assume the temperatures of the ice and steam are at the melting point and vaporization point, respectively. (a). UsingEq21.9, Q = mLF = (2.00 kg) (3.33l05 J/kg) = 6.66105 J (b).UsingEq21.10. Q = mLV = (2.00kg) (2.256106 J/kg) = 14.51106 Jarrow_forward
- For a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases, (d) The internal energy of the gas remains constant, (e) None of those statements is true.arrow_forwardWhy is the following situation impossible? An ideal gas undergoes a process with the following parameters: Q = 10.0 J, W = 12.0 J, and T = 2.00C.arrow_forward
- 8. (a) Let 2.0 kg of liquid water at 100 °C be converted to steam at 100 °C by boiling at standard atmospheric pressure (which is 1.01 × 10° Pa). The volume of that water changes from an initial value of 1.00 x 10 m as a liquid to 1.80 m as steam. Calculate the change in the system's internal energy during the process. [Lv = 2256 kJ/kgl %3Darrow_forward6 kg of ice at -10.0 °C is added to 30 kg of water at 20 oC. (a) How much heat is needed to melt the ice completely? (b) Then, is there enough heat in 30 kg water to melt the ice? (c) Finally, what is the final equilibrium temperature of the system? T (°C) (a) Q = 60 Water 40 20 Ice (b) Water Ice -20 - Q (kcal) (b) T =arrow_forwardA small office building with well-insulated walls and containing 600 m3 of air at 305 K is heated at constant pressure (atmospheric). Consider air to be an ideal diatomic gas. (a) Determine the energy (in kJ) required to increase the temperature of the air in the building by 1.70°C.(b) Determine the mass (in kg) this amount of energy could lift through a height 2.30 m.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning