University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 20.18DQ
The free expansion of an ideal gas is an adiabatic process and so no
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a dilute gas of N monatomic particles with mass m and total energy E, use the Sackur-
Tetrode equation for the entropy
S
V
=
log
+
NkB
to derive expressions for the pressure and internal energy in terms of the temperature T and
volume V.
[You may use that X₁ = 3πh² N/(mE).]
th
A car tire contains 0.0440 m3 of air at a pressure of 2.75 x 10° N/m2 (about 40 psi). How much more internal energy (in J) does this gas have than the same volume has at zero gauge pressure
(which is equivalent to normal atmospheric pressure)? (Assume the tire pressure of 2.75 x 105 N/m2 is absolute pressure, not gauge pressure. Assume for this question that air is monatomic.)
Additional Materials
O Reading
Submit Answer
The molar heat capacities of gases are not perfectly
constant, as we've assumed, but increase slowly with
temperature. An empirical formula for the molar heat
capacity at constant volume of nitrogen is
Cv = (20.6 - 1.6 × 10¯³T +8.0 × 10¯67²) J/mol K,
where T is in K.
What is the entropy increase of the gas if 5.0 g of nitrogen in a rigid container are slowly heated from 300°C to 500°C?
Express your answer with the appropriate units.
Chapter 20 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 20.1 - Your left and right hands are normally at the same...Ch. 20.2 - Rank the following heat engines in order from...Ch. 20.3 - For an Otto-cycle engine with cylinders of a fixed...Ch. 20.4 - Can you cool your house by leaving the...Ch. 20.5 - Would a 100%-efficient engine (Fig. 20.11a)...Ch. 20.6 - An inventor looking for financial support comes to...Ch. 20.7 - Suppose 2.00 kg of water at 50C spontaneously...Ch. 20.8 - A quantity of N molecules of an ideal gas...Ch. 20 - A pot is half-filled with water, and a lid is...Ch. 20 - Prob. 20.2DQ
Ch. 20 - Prob. 20.3DQCh. 20 - Prob. 20.4DQCh. 20 - Why must a room air conditioner be placed in a...Ch. 20 - Prob. 20.6DQCh. 20 - Prob. 20.7DQCh. 20 - An electric motor has its shaft coupled to that of...Ch. 20 - When a wet cloth is hung up in a hot wind in the...Ch. 20 - Compare the pV-diagram for the Otto cycle in Fig....Ch. 20 - The efficiency of heat engines is high when the...Ch. 20 - What would be the efficiency of a Carnot engine...Ch. 20 - Real heat engines, like the gasoline engine in a...Ch. 20 - Does a refrigerator full of food consume more...Ch. 20 - In Example 20.4, a Carnot refrigerator requires a...Ch. 20 - How can the thermal conduction of heat from a hot...Ch. 20 - Explain why each of the following processes is an...Ch. 20 - The free expansion of an ideal gas is an adiabatic...Ch. 20 - Are the earth and sun in thermal equilibrium? Are...Ch. 20 - Prob. 20.20DQCh. 20 - Prob. 20.21DQCh. 20 - Prob. 20.22DQCh. 20 - BIO A growing plant creates a highly complex and...Ch. 20 - A diesel engine performs 2200 J of mechanical work...Ch. 20 - An aircraft engine takes in 9000 J of heat and...Ch. 20 - A Gasoline Engine. A gasoline engine takes in 1.61...Ch. 20 - A gasoline engine has a power output of 180 kW...Ch. 20 - The pV-diagram in Fig. E20.5 shows a cycle of heat...Ch. 20 - (a) Calculate the theoretical efficiency for an...Ch. 20 - The Otto-cycle engine in a Mercedes-Benz SL1 a...Ch. 20 - Section 20.4 Refrigerators 20.8The coefficient of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A freezer has a coefficient of performance of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A Carnot engine is operated between two heat...Ch. 20 - A Carnot engine whose high-temperature reservoir...Ch. 20 - An ice-making machine operates in a Carnot cycle....Ch. 20 - A Carnot engine has an efficiency of 66% and...Ch. 20 - A certain brand of freezer is advertised to use...Ch. 20 - A Carnot refrigerator is operated between two heat...Ch. 20 - A Carnot heat engine uses a hot reservoir...Ch. 20 - You design an engine that takes in 1.50 104 J of...Ch. 20 - A 4.50-kg block of ice at 0.00C falls into the...Ch. 20 - A sophomore with nothing better to do adds heat to...Ch. 20 - CALC You decide to take a nice hot bath but...Ch. 20 - A 15.0-kg block of ice at 0.0C melts to liquid...Ch. 20 - CALC You make tea with 0.250 kg of 85.0C water and...Ch. 20 - Three moles of an ideal gas undergo a reversible...Ch. 20 - What is the change in entropy of 0.130 kg of...Ch. 20 - (a) Calculate the change in entropy when 1.00 kg...Ch. 20 - Entropy Change Due to Driving. Premium gasoline...Ch. 20 - CALC Two moles of an ideal gas occupy a volume V....Ch. 20 - A box is separated by a partition into two parts...Ch. 20 - CALC A lonely party balloon with a volume of 2.40...Ch. 20 - You are designing a Carnot engine that has 2 mol...Ch. 20 - CP An ideal Carnot engine operates between 500C...Ch. 20 - Prob. 20.34PCh. 20 - CP A certain heat engine operating on a Carnot...Ch. 20 - A heat engine takes 0.350 mol of a diatomic ideal...Ch. 20 - Prob. 20.37PCh. 20 - What is the thermal efficiency of an engine that...Ch. 20 - CALC You build a heal engine that takes 1.00 mol...Ch. 20 - CP As a budding mechanical engineer, you are...Ch. 20 - CALC A heal engine Operates using the cycle shown...Ch. 20 - CP BIO Humun Entropy. A person who has skin of...Ch. 20 - An experimental power plant at the Natural Energy...Ch. 20 - CP BIO A Human Engine. You decide to use your body...Ch. 20 - CALC A cylinder contains oxygen at a pressure of...Ch. 20 - A monatomic ideal gas it taken around the cycle...Ch. 20 - A Carnot engine operates between two heat...Ch. 20 - A typical coal-fired power plant generates 1000 MW...Ch. 20 - Automotive Thermodynamics. A Volkswagen Passat has...Ch. 20 - An air conditioner operates on 800 W of power and...Ch. 20 - The pV-diagram in Fig. P20.51 shows the cycle for...Ch. 20 - BIO Human Entropy. A person with skin of surface...Ch. 20 - CALC An object of mass m1, specific heat c1, and...Ch. 20 - CALC To heat 1 cup of water (250 cm3) to make...Ch. 20 - DATA In your summer job with a venture capital...Ch. 20 - DATA For a refrigerator or air conditioner, the...Ch. 20 - DATA You are conducting experiments to study...Ch. 20 - Consider a Diesel cycle that starts (at point a in...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...
Additional Science Textbook Solutions
Find more solutions based on key concepts
24. The 1.0 kg block in FIGURE EX7.24 is tied to the wall with a rope. It sits on top of the 2.0 kg block. The ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
a. Which compound has the stretching vibration for its carbonyl group at the highest frequency: acetyl chloride...
Organic Chemistry (8th Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Answer in 90 minutes please.arrow_forwardA car tire contains 0.0350 m3 of air at a pressure of 2.10 ✕ 105 N/m2 (about 31 psi). How much more internal energy (in J) does this gas have than the same volume has at zero gauge pressure (which is equivalent to normal atmospheric pressure)? (Assume the tire pressure of 2.10 ✕ 105 N/m2 is absolute pressure, not gauge pressure. Assume for this question that air is monatomic.)arrow_forwardIn answering the questions in this problem, assume that the molecules in air (mainly N2 and O2) have five degrees of freedom at this temperature (three translational and two rotational). What is the internal energy U of one mole of air on a very hot summer day (35∘C)? What is the internal energy U of one mole of air on a typical winter day in Boston when the air temperature is −8.0∘C. To put these results in perspective, determine how high one mole of air has to be lifted to gain a potential energy equal to the difference in the energies found in Part A and Part B. (Take the mass of one mole of air to be 28.9 g.)arrow_forward
- A gas at a pressure of 100 atmospheres and temperature of 300 K is suddenly (i.e. adiabatically) compressed from having a volume of 1 liter to a volume of 0.5 liters. What is the new pressure? What if, instead, the compression is done very slowly?arrow_forwardA sample consists of an amount n in moles of a monatomic ideal gas. The gas expands adiabatically, with work W done on it. (Work W is a negative number.) The initial temperature and pressure of the gas are Ti and Pi. Calculate (a) the final temperature and (b) the final pressure.arrow_forward1 liter of an ideal gas is allowed to expand at constant temperature from 3 atm to a final pressure of 1 atm. The energy content of an ideal gas is: U = 3/2nRT. What is ∆U if(a) the process is performed reversibly(b) the process is performed irreversibly Can you please explain your answer?? Answers I found online confused me even more..arrow_forward
- Does the internal energy (U) of a perfect gas go up or down with increasing pressure under adiabatic, reversible conditions (i.e. at constant entropy)? Hint: you’re looking for ∂U/∂P)s . and under conditions of constant entropy, the transition must be adiabatic and reversible. As such: ∂U= CV ∂T, and ∂T/∂P )s = V/Cparrow_forwardWhen an ideal gas undergoes a quasistatic adiabatic volume change, its pressure p and volume V are related by PVY = a constant, where y is the ratio of the molar specific heats for the gas. Start from the first law of thermodynamics, present a proof of this equation.arrow_forwardIf we know that the internal energy of the monoatomic ideal gas remains constant during the process in B to C, what must be the pressure Pc at point C in terms of the original pressure P0.arrow_forward
- Please prove the four Thermo identities shown on the picture.arrow_forwardA 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.08 atm and a volume of 11.0 L to a final volume of 29.0 L. (a) What is the final pressure of the gas? atm(b) What are the initial and final temperatures? (Enter your answers to at least the nearest whole number.) initial K final K (c) Find Q for the gas during this process. kJ(d) Find ΔEint for the gas during this process. kJ(e) Find W for the gas during this process. kJarrow_forwardIn a cylinder, 1.20mol of an ideal monatomic gas, initially at 3.60×105Pa and 300K, expands until its volume triples. Compute the work done by the gas if the expansion is adiabatic. I need a thorough explanation as to HOW to do it. I know that: W = -nCv(Delta T) In another solution, someone said W = -nCvT1(1-(1/3)^2/3).......why??? I need to understand it.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY