To calculate: The equilibrium constant for the reaction given in question at 25°C.
Introduction:
Chloroplast is a double membrane bound organelle present in green plants and algae. Chloroplast contains thylakoid membrane in which two photosystem units PS I and PS II are present. These photosystem units absorb sunlight and pass it to an antenna molecule to drive the photosynthesis process.
Explanation of Solution
To calculate the equilibrium constant for the reaction, first the standard reduction potential is calculated for two half reactions of the given reaction:
The two half reactions of the given equations are given below as:
Now, the change in standard reduction potential can be calculated by using the formula,
In the given formula,
Thus, the value of
Now, standard free energy change can be calculated as:
Thus, standard free energy change is 440 kJ/mol.
Now, the equilibrium constant for the above given reaction is calculated under steady state. Thus, the equilibrium constant of the given reaction can be calculated by the formula given below:
In the given equation,
Now, from above equation, ΔG can be calculated as:
The natural logarithm can be calculated as:
The equilibrium constant for the given reaction is 1.35×10-77.
The equilibrium constant for the reaction at 25°C is
To determine: The way in which chloroplast overcome the unfavorable equilibrium.
Introduction:
Chloroplast is a double membrane bound organelle present in green plants and algae. Chloroplast contains thylakoid membrane in which two photosystem units PS I and PS II are present. These photosystem units absorb sunlight and pass it to an antenna molecule to drive the photosynthesis process.
Explanation of Solution
The calculated equilibrium constant value is 1.35×10-77. A large equilibrium constant value is very unfavorable to drive a reaction. To overcome the equilibrium constant barrier, chloroplast would use both photosystem units (PS I, and PS II). The striking of light in both photosystem units would reduce the equilibrium constant, and help the chloroplast to overcome the equilibrium barrier. Thus, in chloroplast light energy input overcomes this barrier.
Want to see more full solutions like this?
Chapter 20 Solutions
Lehninger Principles of Biochemistry (Instructor's)
- Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forward
- Biochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forward
- Biochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forwardBiochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forward
- Biochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON