(a)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(a)
Answer to Problem 99AE
(a)
The formula of the compound is
The name of the binary compound is calcium nitride.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Calcium nitride
Calcium belongs to the Group
Nitrogen is a non-metal of the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is calcium nitride.
The name of the cation present is Calcium
The anion present is Nitride
Calcium only exists in
Hence, the naming of this binary compound is, Calcium nitride.
(b)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(b)
Answer to Problem 99AE
(b)
The formula of the compound is
The name of the binary compound is Potassium oxide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Potassium oxide
Potassium belongs to the Group
Oxygen belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Potassium oxide.
The name of the cation present is Potassium
The anion present is Oxide
Potassium only exists in
Hence, the naming of this binary compound is, Potassium oxide.
(c)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(c)
Answer to Problem 99AE
(c)
The formula of the compound is
The name of the binary compound is Rubidium fluoride.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Rubidium fluoride
Rubidium belongs to the Group
Fluorine belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Rubidium fluoride.
The name of the cation present is Rubidium
The anion present is Fluoride
Hence, the naming of this binary compound is, Rubidium fluoride.
(d)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(d)
Answer to Problem 99AE
(d)
The formula of the compound is
The name of the binary compound is Magnesium sulphide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Magnesium sulphide
Magnesium belongs to the Group
Sulphur belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Magnesium sulphide.
The name of the cation present is Magnesium
The anion present is Sulphide
Hence, the naming of this binary compound is, Magnesium sulphide.
(e)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(e)
Answer to Problem 99AE
(e)
The formula of the compound is
The name of the binary compound is Barium iodide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Barium iodide
Barium belongs to the Group
Iodine belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is barium iodide.
The name of the cation present is Barium
The anion present is Iodide
Hence, the naming of this binary compound is, Barium iodide.
(f)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(f)
Answer to Problem 99AE
(f)
The formula of the compound is
The name of the binary compound is Aluminium selenide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Aluminium selenide
Aluminium belongs to the Group
Selenium belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Aluminium selenide.
The name of the cation present is Aluminium
The anion present is Selenide
Hence, the naming of this binary compound is, Aluminium selenide.
(g)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(g)
Answer to Problem 99AE
(g)
The formula of the compound is
The name of the binary compound is Cesium phosphide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Cesium phosphide
Cesium belongs to the Group
Phosphorous belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Cesium phosphide.
The name of the cation present is Cesium
The anion present is Phosphide
Hence, the naming of this binary compound is, Cesium phosphide.
(h)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(h)
Answer to Problem 99AE
(h)
The formula of the compound is
The name of the binary compound is Indium(III) bromide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Indium(III) bromide
Indium has an oxidation state of
Oxidation state exhibited by Bromine is
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Indium(III) bromide.
The name of the cation present is Indium
The anion present is Bromide
Here, indium exhibits the
Hence, the naming of this binary compound is, Indium(III) bromide.
Want to see more full solutions like this?
Chapter 2 Solutions
CHEMISTRY,AP EDITION-W/ACCESS (HS)
- Zeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardDon't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning