INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
12th Edition
ISBN: 9781337915977
Author: Bettelheim
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 93P
2-100 A 0.100 g sample of magnesium, when combined with oxygen, yields 0.166 g of magnesium oxide. What masses of magnesium and oxygen must be combined to make exactly 2.00 g of magnesium oxide?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hydrogen fluoride is used in the manufacture of Freons (which destroy ozone in the stratosphere) and in the production of aluminum metal. It is prepared by the reaction: __CaF2 + __ H2SO4 → __CaSO4 + __ HF. In one batch, 500 g of CaF2 was made to react with 250 g of H2SO4 . Atomic weights: Ca=40, F=19, H=1, S=32, O=16
How many grams of CaF2 can be produced from 250 g of H2SO4 (final answers should be in 3 significant figures)?
The fluoride rinse in dental offices usually contains sodium fluoride. Sodium fluoride can be prepared from the reaction between sodium metal and fluorine gas. Which properly represents the balanced chemical equation for this reaction?
Na(s) + F2(g) → NaF2(s)
Na(s) + F(g) → NaF(s)
7Na(s) + F(g) → Na7F(s)
2Na(s) + F2(g) → 2Na2F(s)
2Na(s) + F2(g) → 2NaF(s)
Why is it important to understand this equation? What do you think could happen if this is incorrect?
Thank you
The fluoride rinse in dental offices usually contains sodium fluoride. Sodium fluoride can be prepared from the reaction between sodium metal and fluorine gas. Which properly represents the balanced chemical equation for this reaction?
Na(s) + F2(g) → NaF2(s)
Na(s) + F(g) → NaF(s)
7Na(s) + F(g) → Na7F(s)
2Na(s) + F2(g) → 2Na2F(s)
2Na(s) + F2(g) → 2NaF(s)
Why is it important to understand this equation? What do you think could happen if this is incorrect?
*****************************************************************************
Need help with this portion
For balancing equations my approach is trial by error.
We want to sum up the atoms on each side and change the coefficients (number in front of each chemical species) until they are equal.
I find the easiest way is to play with the numbers until they add up, and with practice you will see some patterns emerge. There is also this method below recommend by the book.
However you choose to approach it is up to you, everyone has their…
Chapter 2 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
Ch. 2.2 - Problem 2-1 Write the formulas of compounds in...Ch. 2.4 - Problem 2-2 What is the mass number of an atom...Ch. 2.4 - Problem 2-3 Name the elements given in Problem...Ch. 2.4 - Problem 2-4 (a) What are the atomic numbers of...Ch. 2.4 - Prob. 2.5QCCh. 2.4 - Problem 2-6 The atomic weight of lithium is 6.941...Ch. 2.6 - Problem 2-7 Write the Lewis dot structure for the...Ch. 2 - Prob. 1PCh. 2 - 9 Answer true or false. (a) Matter is divided into...Ch. 2 - Prob. 3P
Ch. 2 - Prob. 4PCh. 2 - 2-12 The elements game, Part 1. Name and give the...Ch. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - 2-17 How does Dalton’s atomic theory explain: (a)...Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - 2-20 Calculate the percentage of hydrogen and...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - 2-23 It has been said, “The number of protons...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - 2-26 Given these mass numbers and number of...Ch. 2 - If each atom in Problem 19 acquired two more...Ch. 2 - Prob. 21PCh. 2 - 2-29 How many protons and how many neutrons does...Ch. 2 - Prob. 23PCh. 2 - 2-31 Tin-118 is one of the isotopes of tin. Name...Ch. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - 2-34 There are only two naturally occurring...Ch. 2 - 2-35 The two most abundant naturally occurring...Ch. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - 2-43 Which group(s) of the Periodic Table...Ch. 2 - 2-44 Which period(s) in the Periodic Table...Ch. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - 2-47 Which element in each pair is more metallic?...Ch. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - 2-51 What is the correlation between the group...Ch. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - 2-59 You are presented with a Lewis dot structure...Ch. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - 2-64 Consider the elements B, C, and N. Using only...Ch. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - 2-67 Account for the fact that the first...Ch. 2 - Prob. 61PCh. 2 - 2-69 (Chemical Connections 2A) Why does the body...Ch. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - 2-73 (Chemical Connections 2D) Copper is a soft...Ch. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - 2-83 The natural abundance of boron isotopes is as...Ch. 2 - Prob. 77PCh. 2 - 2-85 The mass of a proton is 1.67 × 10-24g. The...Ch. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - 2-91 These are the first two ionization energy for...Ch. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - 2-94 Using your knowledge of trends in element...Ch. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - 2-97 Explain why the Ca3+ ion is not found in...Ch. 2 - 2-98 Explain how the ionization energy of atoms...Ch. 2 - 2-99 A 7.12 g sample of magnesium is heated with...Ch. 2 - 2-100 A 0.100 g sample of magnesium, when combined...Ch. 2 - 2-101 Complete the following table: Symbol Atomic...Ch. 2 - 2-102 An element consists of 90.51% of an isotope...Ch. 2 - 2-103 The element silver has two naturally...Ch. 2 - 2-104 The average atomic weight of lithium is...Ch. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Consider the Period 3 elements of the Periodic...Ch. 2 - Name the element that corresponds to each of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 3.116 The simplest approximate chemical formula for the human body could be written as C728H4850O1970N104Ca24P16K4S4Na3Cl2Mg. Based on this formula, describe how you would rank by mass the ten most abundant elements in the human body.arrow_forwardConsider the following data for three binary compounds of hydrogen and nitrogen: %H (by Mass) %N (by Mass) I 17.75 82.25 II 12.58 87.42 III 2.34 97.66 When 1.00 L of each gaseous compound is decomposed to its elements, the following volumes of H2(g) and N2(g) are obtained: H2(L) N2(L) I 1.50 0.50 II 2.00 1.00 III 0.50 1.50 Use these data to determine the molecular formulas of compounds I, II, and III and to determine the relative values for the atomic masses of hydrogen and nitrogen.arrow_forwardAn adult human body contains 6.0 L blood, which contains about 15.5 g hemoglobin per 100.0 mL blood. The molar mass of hemoglobin is approximately 64,500 g/mol and there is 4 mol iron per 1 mol hemoglobin. A news item claims that there is sufficient iron in the hemoglobin of the body that this iron, if it were in the form of metallic iron, could make a 3-in. iron nail that weighs approximately 3.7 g. Show sufficient calculations to either support or refute the claim.arrow_forward
- Given that the density of argon is 1.78 g/L under standard conditions of temperature and pressure, how many argon atoms are present in a room with dimensions 4.0 m 5.0 m 2.4 m that is filled with pure argon under these conditions of temperature and pressure?arrow_forwardThe density of a mixture of gases may be calculated by summing the products of the density of each gas and the fractional volume of space occupied by that gas. (Note the similarity to the calculation of the molar mass of an element from the isotopic masses and fractional abundances.) Assume dry air with CO2 removed is 20.96% (by volume) oxygen. 78.11% nitrogen, and 0.930% argon. Determine the density of argon.arrow_forwardThe age of the universe is unknown, but some conclude from measuring Hubbles constant that the age is about 18 billion years old, which is about four times the age of Earth. If so, calculate the age of the universe in seconds. If you had a sample of carbon with the same number of carbon atoms as there have been seconds since the universe began, determine whether you could measure this sample on a laboratory balance that can detect masses as small as 0.1 mg.arrow_forward
- Is there a difference between a homogeneous mixture of hydrogen and oxygen in a 2:1 mole ratio and a sample of water vapor? Explain.arrow_forwardIf 2 moles of water decomposes, the products that will form are 2 moles of hydrogen gas and one mole of oxygen gas. If a reaction is conducted that consumes 20.0 mL of water, what volume of oxygen gas will be produced (in L)? The density of water is 0.998 g/mL. Assume that 1 mole of oxygen gas has a volume of 22.414 L. Use these atomic masses: H = 1.008 amu; O = 15.999 amu Not these answers: 12.32 12.417 18.015 0.55arrow_forwardA sample of a gaseous binary compound of boron and chlorine weighing 2.842 g occupies 0.153 L. This sample is decomposed to give 0.664 g solid boron and enough gaseous chlorine (Cl2) to occupy 0.688 L at the same temperature and pressure. Determine the number of atoms of boron and the number of atoms of chlorine in a molecule of this compound.arrow_forward
- Create a diagram to trace the development of the modern periodic table based on the observations on the properties of the elements? 3. Is the periodic table useful to you as a student? Justify your answer. 2. If you were to create a simple product using metals, nonmetals, and metalloids, what would your product be like? Sketch the design and composition of your product. Then, briefly explain what properties of each material are utilized in each part of the product. 4.arrow_forwardAnhydrous CuSO4 is converted to CuSO4 · XH20 to absorb water from certain liquids. What is the value of x if 24.3 g of anhydrous CusO4 is required to remove 13.7 g H20 from a gallon of gasoline? Type your answer (must be a whole number) below. Relative atomic masses: H = 1.008; 0 = 15.999; S = 32.06; Cu = 63.546 Your answer: CuSO4 • H20arrow_forwardMatter is neither created nor destroyed in a chemical reaction. Thus, the mass of the products of a chemical reaction must be equal to the mass of the starting materials. Formally, this concept is called the law of conservation of mass. A sample of sodium reacts completely with 0.426 kg k g of chlorine, forming 702 g g of sodium chloride. What mass of sodium reacted?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY