Concept explainers
(a)
Interpretation:
True and false
Meaning of “energy is quantized” that only certain energy values are allowed.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on it own axis.
Answer to Problem 42P
True.
Explanation of Solution
Electrons might be promoted only to the higher energy orbitals of certain fixed energy values; the value in between are not allowed. Thus, the given statement is True.
(b)
Interpretation:
True and false
According to Bohr energy of an electron in an atom is quantized.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
The electron in an atom don’t move freely in the space around the nucleus. The electrons move in certain fixed orbitals which have certain energy levels. Thus, the energy of the electrons in an atom is quantized. Therefore, the provided statement is True.
(c)
Interpretation:
True and false
Electrons present in the atoms are confined to regions of space known as “principle energy levels”.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
Though there is significantly large space outside the nucleus, the electrons are confined to particular regions around the nucleus. These regions are called the “principle energy levels” or shells. Therefore, the provided statement is True.
(d)
Interpretation:
True and false
Each principal energy level might hold the maximum of two electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
False.
Explanation of Solution
Each principal energy level or shell contains of varying number of subshells s, p, d, f. Thus, the number of electrons in each principal energy level also varies. The subshells (s) might hold a maximum of the two electrons, while the subshells p, d, f might hold the maximum 8, 18 and 32 electrons respectively. Therefore, the provided statement is False.
(e)
Interpretation:
True and false
An electron in a 1s orbital is held closer to the nucleus than an electron in a 2s orbitals.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
The 1s orbital lies in the first principal energy level, whereas the 2s orbital lies in the second principal energy level. The initial principal energy level is nearer to the nucleus as compared to the second. Therefore, the electron in the 1s orbital is nearer to the nucleus than that in the 2s orbital. Therefore, the provided statement is True.
(f)
Interpretation:
True and false
An electron in a 2s orbital is harder to remove from an atom than an electron in a 2s orbital.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
False.
Explanation of Solution
The electron in the 1s orbital is closer to the nucleus than the electron in the 2s orbital. So, the nuclear attraction on the electrons in the 1s orbital is greater than on those in the 2s orbital. Therefore, a higher energy is needed to remove the inner 1s electron compared to the 2s electron. So, the electron in 1s orbital is harder to remove from an atom than an electron in a 2s orbital. Therefore, the provided statement is False.
(g)
Interpretation:
True and false
An s orbital has the shape of a sphere, with the nucleus at the center of the sphere.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
The shapes of the orbitals represent the electron density that is the probability of finding the electrons. For an s orbital, the electron density is spherical around the nucleus. Therefore, the provided statement is True.
(h)
Interpretation:
True and false
Each 2p orbital has the shape of a dumbbell, with the nucleus at the midpoint of the dumbbell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
For a 2p orbital the electron density is a dumbbell shaped, with the nucleus at the midpoint of the dumbbell. Therefore, the provided statement is True.
(i)
Interpretation:
True and false
The three 2p orbitals in an atom are aligned parallel to each other.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
False.
Explanation of Solution
Each 2p orbital has the shape of the dumbbell, and the three 2p orbitals 2px, 2py, 2pz are at the right angles to each other with each orbital on x, y, z axis. Therefore, the provided statement is False.
(j)
Interpretation:
True and false
An orbital is a region of space that can hold two electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
In an atom, shells are divided into subshells, and within these subshells, electrons are grouped in orbitals with each orbital holding a maximum of two electrons. Therefore, the provided statement is True.
(k)
Interpretation:
True and false
The second shell contains one ‘s’ orbital and three ‘p’ orbitals.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
The second shell can hold a maximum of eight electrons. These electrons can occupy the 2s and 2p orbitals. The 2s orbital is a single s orbital and holds two electrons. The 2p orbitals in sets of three and hold six electrons. Thus, the second shell one s orbital and three p orbitals. Therefore, the provided statement is True.
(l)
Interpretation:
True and false
In the ground-state electron configuration of an atom, only the lowest-energy orbitals are occupied.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
The electron configuration of an atom provides description of the orbitals in which the electrons are occupied. In the ground-state electron configuration, electrons occupy the orbital the orbital of lower energy first. All other orbitals of higher energy are empty. Therefore, the provided statement is True.
(m)
Interpretation:
True and false
A spinning electron behaves as a tiny bar magnet, with a North Pole and South Pole.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
A spinning electron produces a tiny magnetic field, aligning itself in the north-south direction. Thus, a spinning electron is considered as a tiny bar magnet, with a North Pole and a South Pole.
Therefore, the provided statement is True.
(n)
Interpretation:
True and false
An orbital can hold a maximum of two electrons with their spins paired.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
An orbital can hold a maximum of two electrons. When magnetic field of two electrons are aligned in opposite directions, the electrons are said to be spin-paired.
Therefore, the provided statement is True.
(o)
Interpretation:
True and false
Paired electrons spins mean that the two electrons are aligned with their spins North Pole to North Pole and South Pole to South Pole.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
False.
Explanation of Solution
When magnetic fields of two electrons are aligned in opposite directions, the electrons are said to be spin-paired. Paired electron spins mean that the two electrons are aligned with their spins, North Pole to South Pole and South Pole to North Pole.
Therefore, the provided statement is False.
(p)
Interpretation:
True and false
An orbital box diagram puts all of the electrons of an atom in one box with their spins aligned.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
False.
Explanation of Solution
The orbital box diagrams are used to represent the electrons. In this diagram, each box represents an orbital, so each box will hold a maximum of two electrons. An unpaired electron is represented by an arrow with its head up, whereas two electrons with paired spins are represented by a pair of arrows with heads in opposite directions. So the orbital box diagram doesn’t fill all of the electrons an atom in one box with their spins aligned.
Therefore, the provided statement is False.
(q)
Interpretation:
True and false
An orbital box diagram of a carbon atom shows two unpaired electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
A neutral carbon atom has six electrons. Two electrons are placed in the 1s orbital and two electrons are placed in the 2s orbital. The electrons in 1s an 2s orbitals are paired. The remaining two electrons are placed each in 2px, 2py orbitals.
Therefore, the provided statement is True.
(r)
Interpretation:
True and false
A Lewis dot structure shows only the electrons in the valence shell of an atom of the element.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
When writing a Lewis dot structure for an atom, the
Therefore, the provided statement is True.
(s)
Interpretation:
True and false
A characteristic of Group 1A elements is that each has one unpaired electron in its outermost occupied (valence) shell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
True.
Explanation of Solution
The group number provided the number of valence electrons in the outer shell of an atom. As the elements in Group 1A have only one valance electrons, it is always unpaired.
Therefore, the provided statement is True.
(t)
Interpretation:
True and false
A characteristic of Group 6A elements is that each has six unpaired electrons in its outermost occupied (valence) shell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 42P
False.
Explanation of Solution
The group number gives the number of valence electrons in the outer shell of an atom, and not the number of unpaired electrons. Group 6A elements have six valence electrons. Out of the six valence electrons, two electrons occupy the 2s orbital. The remaining four electrons occupy the 2p orbital such that two electrons are paired in a 2px orbital, whereas two unpaired electrons remain in 2py and 2pz.
Therefore, the provided statement is False.
Want to see more full solutions like this?
Chapter 2 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
- 7. Assign all of the protons on the spectrum below. A B 2 C E 2 1 3 6 4 3 2 1 0arrow_forwarde. If (3R,4R)-3,4-dichloro-2,5-dimethylhexane and (3R,4S)-3,4-dichloro-2,5-dimethylhexane are in a solution at the same concentration, would this solution be expected to rotate plane polarized light (that is, be optically active)? Please provide your reasoning for your answer. [If you read this problem carefully, you will not need to draw out the structures to arrive at your answer...]arrow_forward1. How many neighbors does the proton that produces the multiplet below have? 2. 3. اللـ Draw a partial structure from the multiplet below. (The integration of the multiplet is 6) M Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical shifts of the protons indicated below. (Show your work!!!) B A Br SHarrow_forward
- 1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°? To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide. kindly show me how to solve this long problem. Thanksarrow_forward4. An 'H-NMR of a compound is acquired. The integration for signal A is 5692 and the integration for signal B is 25614. What is the simplest whole number ratio of protons for signals A and B? (Show your work!!!) 5. Assign the carbons in the NMR below as either carbonyl, aromatic, or alkyl. 200 150 100 50 ō (ppm) 1arrow_forwardSpeaking of composite materials, indicate the correct option:(A). Composite materials can only be: metal-polymer or polymer-polymer.(B). Composite materials can be made up of particles, but not fibers or sheets.(C). When the reinforcing particles are uniformly distributed in a composite material, there may be a greater tendency for it to have isotropic properties.(D). None of the above is correct.arrow_forward
- If we are talking about viscoelastic modulus or viscoelastic relaxation modulus in polymers, indicate the correct option.(A). It reports the variation of elastic behavior as a function of time.(B). It is only useful for defining its glass transition temperature.(C). It only allows us to define the polymer degradation temperature.(D). Neither option is correct.arrow_forwardWhen natural light falls perpendicularly on a material A, it has a reflectivity of 0.813%. Indicate the value of the refractive index.arrow_forwardIn piezoelectricity and piezoelectric ceramics, one of the following options is false:(A). Piezoelectricity allows an electrical signal to be transformed into a mechanical one.(B). PbZrO3 is a well-known piezoelectric ceramic.(C). Piezoelectricity and ferroelectricity in general have no relationship.(D). One of the applications of piezoelectricity is sonar.arrow_forward
- (30 MARKS) Give the major product(s ) formed including relevant stereochemistry or the complete reaction conditions for the following reactions. More than one step may be required for each reaction arrow, in which case the steps must be numbered 1), 2) etc. (2 marks each box) h) i) h) OH i) HO H3PO4, heat 2 Brarrow_forwardNonearrow_forwardIndicate which option is false(A). Resistivity has a residual component and a thermal component.(B). In some materials resistivity increases with T and in others it decreases.(C). In insulating materials, resistivity is very low.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning