(a)
Interpretation:
Which is more likely to conduct electricity and heat: metal or non-metal should be identified.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(b)
Interpretation:
Which is more likely to accept electrons: metal or non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(c)
Interpretation:
Which is more likely to be malleable in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(d)
Interpretation:
Which is more likely to be gas at room temperature in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(e)
Interpretation:
Which is more likely to be a transition element in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(f)
Interpretation:
Which is more likely to lose electrons in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
- ADDITIONAL PRACTICE PRACTICE Problems Write formulas for ionic compounds composed of the following ions. Use units as a guide to your solutions. 24. sodium and nitrate 25. calcium and chlorate 26. aluminum and carbonate 27. CHALLENGE Write the formula for an ionic compound formed by ions from a group 2 element and polyatomic ions composed of only carbon and oxygen. ounds 1998arrow_forward7:35 < Dji Question 19 of 22 5G 50% Submit What is the pH of a buffer made from 0.350 mol of HBrO (Ka = 2.5 × 10-9) and 0.120 mol of KBRO in 2.0 L of solution? | 1 2 3 ☑ 4 5 6 C 7 8 ☐ 9 +/- Tap here for additional resources ||| 0 ×10 Гarrow_forwardaw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. B C Br HO O Substitution will not occur at a significant rate. Explanation Check + Х Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibarrow_forward
- Complete the following reactions with the necessary reagents to complete the shown transformation. Example: 1. 2. ? 3. 018 Br OH Answer: H₂O, H2SO4, HgSO4arrow_forward7:34 • < Question 18 of 22 5G 50% Submit What is the pH of a buffer made from 0.220 mol of HCNO (Ka = 3.5 × 10-4) and 0.410 mol of NaCNO in 2.0 L of solution? 1 2 3 ☑ 4 5 6 C 7 8 | 9 +/- 0 ×10 Tap here for additional resources ||| Гarrow_forward6:46 ✔ 5G 58% < Question 7 of 22 Submit What is the primary species in solution at the halfway point in a titration of NH3 with HBr? A NH3 and H+ B NH₁+ and H+ C NH4+ D NH3 and NH4+ Tap here for additional resources |||arrow_forward
- 6:49 Dji < Question 15 of 22 4G 57% Submit The pOH of a solution is 10.50. What is the OH- concentration in the solution? A 3.2 × 10-4 M B C 3.2 x 10-11 M 10.50 M D 4.2 M E 3.50 M Tap here for additional resources |||arrow_forwardヨ 6:49 Dji < Question 13 of 22 5G 57% Submit The pH of a solution is 2.40. What is the H+ concentration in the solution? A B 2.5 x 10-12 M 4.0 × 10-3 M C 2.40 M D 4.76 M 11.60 M Tap here for additional resources |||arrow_forwardヨ C 6:48 Di✔ < Question 12 of 22 5G 57% Submit The pH of a solution is 12.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 9.25 M 12.50 M Tap here for additional resources |||arrow_forward
- ヨ C 6:48 Di✔ < Question 11 of 22 5G 57% Submit The pH of a solution is 1.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 2.15 M 12.50 M Tap here for additional resources |||arrow_forwardSelect the product of the following reaction. Lon HO Meat ?? CH₂OH OH A D OH OCH B OH of OCH of CH חח E C CHarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning