Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 84EAP
A rubber ball is shot straight up from the ground with speed v0. Simultaneously, a second rubber ball at height h directly above the first ball is dropped from rest.
a. At what height above the ground do the balls collide? Your answer will be an algebraic expression in terms of h, v0, and g.
b. What is the maximum value of h for which a collision occurs before the first ball falls back to the ground?
c. For what value of h does the collision occur at the instant when the first ball is at its highest point?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This is a three part problem.
A penny is thrown vertically upward with a speed of
10 m/s. Exactly 1 second later a dime is thrown upward along the same path as the penny at a speed of 15 m/s. Ignoring air resistance:
A. At what time do the penny and dime collide?
B. At what height does the collision occur?
C. Is the penny on the way up or down when the collision occurs?
Your frined drops a tennis ball from her window (66.1 m above the ground). One second later you throw a rock(as a projectile) from the ground. The rock and the ball collide at x=32.6m, y=22 m measured from where the rock was thrown.
a.) Determine how many second after the tennis ball is released the collision takes place.
b.) Determine the velocity of the tennis ball at the time of the collision with the rock.
c.) Determine the initial velocity of the rock in its component form.
2. A flea jumps into the air with an initial velocity of 6 feet
per
second.
a. Write a function for the height h of the flea after t seconds.
b. How many seconds is the flea in the air?
c. After how many seconds did the flea reach its maximum height?
d. What is the maximum height of the rocket?
Chapter 2 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Anthony carelessly rolls his toy car off a 74.0-cm-high table. The car strikes the floor a horizontal distance of 97.0 cm from the edge of the table. a. What was the velocity with which the car left the table? b. What was the angle of the cars velocity with respect to the floor just prior to impact?arrow_forwardA firecracker explodes into four equal pieces (Fig. P3.35). Given the magnitude and direction of the velocity for each piece and the coordinate system shown, determine the x and y velocity components for each piece of the firecracker.arrow_forwardAn experimentalist in a laboratory finds that a particle has a helical path. The position of this particle in the laboratory frame is given by r(t)=Rcost+Rsint+vztk where R, vz, and are constants. A moving frame has velocity (vM)L=vzk relative to the laboratory frame. a. What is the path of the particle in the moving frame? b. What is the velocity of the particle as a function of time relative to the moving frame? c. What is the acceleration of the particle in each frame? d. How should the acceleration in each frame be related? Does your answer to part (c) make sense? Explain.arrow_forward
- In Example 2.12, two circus performers rehearse a trick in which a ball and a dart collide. We found the height and time of the collision graphically. Return to that example, and find height and time by simultaneously solving the equations for the ball and the dart.arrow_forwardA rubber ball is shot straight up from the ground with speed vo. Simultaneously, a second rubber ball at height h directly above the first ball is dropped from rest. At what height above the ground do the balls collide? Your answer will be a symbolic expression in terms of vo, h, and g. What is the maximum value of h for which a collision occurs before the first ball falls back to the ground?arrow_forwardA rubber ball rebounds to 0.72 of the height from which it has dropped. It is first dropped from aheight of 6 meters onto level ground. a. After 2 bounces, what height does it rebound? Draw a sketch to help you. b. After how many bounces does it first rebound to a height less than 1 meter? (deals with sequences and series)arrow_forward
- Jeric, a professional rooftop futbol player, kicked a 4.0 kg ball off a rooftop that is 50 m off the ground, at 10 m/ s oriented 30° degree above his horizon. His pal, Joshua, caught the ball from a window at a distant building that is 25 m off the ground. Joshua then released the ball from this height and let the ball fall to the ground. A. What is the speed of the ball just before it reaches Joshua? B. What is the speed of the ball just before it reaches the ground?arrow_forwardA skier gliding across the snow at 3.0 m/s suddenly starts down a 10° incline, reaching a speed of 15 m/s at the bottom. Friction between the snow and her freshly waxed skis is negligible.a. What is the length of the incline?b. How long does it take her to reach the bottom?arrow_forwardB6arrow_forward
- Stephen Curry passed the ball to Kevin Durant. Durant let the ball bounce before getting the ball for the dunk. The ball bounced with a velocity of 8.5 m/s at an angle of 70°. a. Find the x-component (horizontal) of the initial velocity, b. And the y-component (vertical) of the initial velocity. Assume that Kevin Durant did not get ball from the first bounce. c. Find the Maximum height of the ball d. Find the range (distance in x direction) of the ball after the first bounce? e. How long is the ball in the air after the first bouncearrow_forwardA ball is thrown straight upward from a height of 3.2 m with a velocity of 13.0 m/s. a. What is the maximum height the ball reaches? b. How long does it take the ball to reach the maximum height? c. What is the total time the ball is in the air? d. With what velocity does the ball impact the surface?arrow_forwardKenny is climbing the stairs of his apartment building for exercise. Kenny weighs 83 kg and the height of a single step on the staircase is 11 inches. He climbs a flight of stairs in 4.0 seconds. a.) calculate the rate at which the stairs can be climbed considering the given information (stairs per second). b.) How long can kenny sustain this pace (so like, continuously climbing the stairs and not leaping up a bunch of stairs at one instant)? c.) Why does Kenny descend stairs at a faster rate for a nearly unlimited time although very similar forces are exerted descending as they are ascending?(This points to a fundamentally different process for descending versus climbing stairs.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY