Careful measurements have been made of Olympic sprinters in the 100 meter dash. A simple but reasonably accurate model is that a sprinter accelerates at 3.6 m/s 2 for 3 1 3 s, then runs at constant velocity to the finish line. a. What is the race time for a sprinter who follows this model? b. A sprinter could run a faster race by accelerating faster at the beginning, thus reaching top speed sooner. If a sprinter’s top speed is the same as in part a, what acceleration would he need to run the 100 meter dash in 9.9 s? c. By what percent did the sprinter need to increase his acceleration in order to decrease his time by 1%?
Careful measurements have been made of Olympic sprinters in the 100 meter dash. A simple but reasonably accurate model is that a sprinter accelerates at 3.6 m/s 2 for 3 1 3 s, then runs at constant velocity to the finish line. a. What is the race time for a sprinter who follows this model? b. A sprinter could run a faster race by accelerating faster at the beginning, thus reaching top speed sooner. If a sprinter’s top speed is the same as in part a, what acceleration would he need to run the 100 meter dash in 9.9 s? c. By what percent did the sprinter need to increase his acceleration in order to decrease his time by 1%?
Careful measurements have been made of Olympic sprinters in the 100 meter dash. A simple but reasonably accurate model is that a sprinter accelerates at 3.6 m/s2 for
3
1
3
s, then runs at constant velocity to the finish line.
a. What is the race time for a sprinter who follows this model?
b. A sprinter could run a faster race by accelerating faster at the beginning, thus reaching top speed sooner. If a sprinter’s top speed is the same as in part a, what acceleration would he need to run the 100 meter dash in 9.9 s?
c. By what percent did the sprinter need to increase his acceleration in order to decrease his time by 1%?
2. Consider a 2.4 m long propeller that
operated at a constant 350 rpm. Find the
acceleration of a particle at the tip of the
propeller.
2. A football is kicked at an angle 37.0° above
the horizontal with a velocity of 20.0 m/s, as
Calculate (a) the maximum height, (b) the
time of travel before the football hits the
ground, and (c) how far away it hits the
ground. Assume the ball leaves the foot at
ground level, and ignore air resistance, wind,
and rotation of the ball.
Please don't use Chatgpt will upvote and give handwritten solution
Chapter 2 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.