Physics for Scientists and Engineers with Modern Physics, Technology Update
Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 83CP

In a women’s 100-m race, accelerating uniformly, Laura takes 2.00 s and Healan 3.00 s to attain their maximum speeds, which they each maintain for the rest of the race. They cross the finish line simultaneously, both setting a world record of 10.4 s. (a) What is the acceleration of each sprinter? (b) What are their respective maximum speeds? (c) Which sprinter is ahead at the 6.00-s mark, and by how much? (d) What is the maximum distance by which Healan is behind Laura, and at what time does that occur?

(a)

Expert Solution
Check Mark
To determine

The acceleration of each sprinter.

Answer to Problem 83CP

The acceleration of Laura and Healan are 5.31m/s2 and 3.74m/s2 respectively.

Explanation of Solution

Section 1:

To determine: The acceleration of the Laura.

Answer: The acceleration of the Laura is 5.31m/s2 .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s and the travelled distance for sprinter is 100m

The distance covered by Laura is,

S1=12(t1)2a1+a1(t1)(t1't1) (I)

  • a1 is the acceleration for Laura.
  • S1 is the distance travelled by Laura.
  • t1 is the acceleration time.
  • t1' is the remaining acceleration time for Laura.

Substitute 100m for S1 , 2s for t1 and 8.4s for t1' to find the a1 .

100m=12(2s)2a1+a1(2s)(8.4s)a1=5.31m/s2

Conclusion:

Therefore, the acceleration of Laura is 5.31m/s2 .

Section 2:

To determine: The acceleration of the Healan.

Answer: The acceleration of the Healan is 3.74m/s2 .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

The distance covered by Healan is,

S2=12(t2)2a2+a2(t2)(t2't2) (II)

  • a2 is the acceleration for Healan.
  • S2 is the distance travelled by the Healan.
  • t2 is the acceleration time.
  • t2' is the remaining acceleration time for Healan.

Substitute 100m for S2 , 3s for t2 and 7.4s for t2' to find the a2 .

100m=12(3s)2a2+a2(3s)(7.4s)a2=3.74m/s2

Conclusion:

Therefore, the acceleration of Healan and 3.74m/s2 .

(b)

Expert Solution
Check Mark
To determine

The maximum speeds of Laura and Healan.

Answer to Problem 83CP

The maximum speeds of Laura and Healan are 10.62m/s and 11.22m/s .

Explanation of Solution

Section 1:

To determine: The maximum speeds of Laura.

Answer: The maximum speeds of Laura is 10.62m/s .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Formula to calculate the maximum speed for Laura is,

v1=a1t1

  • v1 is the maximum speed of Laura.

Substitute 5.31m/s2 for a1 and 2s for t1 to find the v1 .

v1=(5.31m/s2)(2s)=10.62m/s

Conclusion:

Therefore, the maximum speed for Laura is 10.62m/s .

Section 2:

To determine: The maximum speeds of Healan.

Answer: The maximum speeds of Healan is 11.22m/s .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Formula to calculate the maximum for Healan is,

v2=a2t2

  • v2 is the maximum speed of Healan.

Substitute 3.74m/s2 for a2 and 3s for t2 to find the v2 .

v2=(3.74m/s2)(3s)=11.22m/s

Conclusion:

Therefore, the maximum speed for Healan is 11.22m/s .

(c)

Expert Solution
Check Mark
To determine

The sprinter which is ahead at 6.20s from another and also determine the distance by which one sprinter is ahead by another.

Answer to Problem 83CP

The sprinter is Laura is ahead of Healan by 2.60m .

Explanation of Solution

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Formula to calculate the distance for Laura at 6s from equation (I) is,

S1=12(t1)2a1+a1(t1)(t1't1)

Formula to calculate the distance for Healan at 6s from equation (II) is,

S2=12(t2)2a2+a2(t2)(t2't2)

The difference of distance travelled by two sprinters is,

ΔS=S1S2

Substitute 12(t1)2a1+a1(t1)(t1't1) for S1 and 12(t2)2a2+a2(t2)(t2't2) for S2 in the above equation.

ΔS=(12(t1)2a1+a1(t1)(t1't1))(12(t2)2a2+a2(t2)(t2't2))

Substitute 5.31m/s2 for a1 , 6.20s for t1' , 2s for t1 , 3.74m/s2 for a2 , 6s for t2' and 3s for t2 to find ΔS .

ΔS=[{12(2s)25.31m/s2+5.31m/s2(2s)(6s2s)}{12(3s)23.74m/s2+3.74m/s2(3s)(6s3s)}]=53.1m50.5m=2.6m

The positive sign shows that Laura is ahead of Healan.

Conclusion:

Therefore, the sprinter Laura is ahead of Healan by 2.60m .

(d)

Expert Solution
Check Mark
To determine

The maximum distance by which Healan is behind Laura and time at which maximum distance occurs.

Answer to Problem 83CP

The maximum distance by which Healan is behind Laura is 4.46m at time 2.84s .

Explanation of Solution

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Maximum distance between runners occurs when each has the same velocity setting the equal to each other.

Laura has already reached her maximum speed while Healan is still accelerating so,

10.62m/s=(3.74m/s2)tt=2.84s

Formula to calculate the distance for Laura at 2.84s from equation (I) is,

S1=12(t1)2a1+a1(t1)(tt1)

  • t is the time at which maximum distance occurs.

Formula to calculate the distance for Healan from equation (II) is,

S2=12(t)2a2

The maximum distance by which Healan is behind Laura is,

ΔS=S1S2

Substitute 12(t1)2a1+a1(t1)(tt1) for S1 and 12(t)2a2 for S2 in the above equation.

ΔS=(12(t1)2a1+a1(t1)(tt1))12(t)2a2

Substitute 5.31m/s2 for a1 , 2.84s for t1' , 2s for t1 , 5.31m/s2 for a2 and 2.84s for t to find ΔS .

ΔS={12(2s)25.31m/s2+5.31m/s2(2s)(2.84s2s)}12(2.84s)23.74m/s2=19.54m15.08m=4.46m

Conclusion:

Therefore, the maximum distance by which Healan is behind Laura is 4.46m at time 2.84s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positive
Part A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/C
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NC

Chapter 2 Solutions

Physics for Scientists and Engineers with Modern Physics, Technology Update

Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY