Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 1CQ
If the average velocity of an object is zero in some time interval, what can you say about the displacement of the object for that interval?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am having trouble with an average speed problem. The problem states that a person walks at 4.5 meters per second from point a to b. Then walks back from point b to a at a speed of 3.2 m/s. I know that average speed is displacement/time. However I am not sure how to calculate time or displacement from the two givens. The problem also gives that the average velocity is 0.
A particle moves along the x axis. Its x coordinate varies with time according to the
expression x = 3t° – 2t +5, where x is in meters and t is in seconds.
a) Determine the displacement of the particle in the time intervals t=1s to t=3s.
b) Calculate the average velocity in the time intervals t=1s to t=3s.
c) Find the instantaneous velocity of the particle at t=2.5s.
d) Calculate the average acceleration in the time intervals t=1s to t=3s.
e) Find the instantaneous acceleration of the particle at t=2.5s.
In this problem you will determine the average velocity of a moving object from the graph of its position x(t)x(t) as a function of time ttt. A traveling object might move at different speeds and in different directions during an interval of time, but if we ask at what constant velocity the object would have to travel to achieve the same displacement over the given time interval, that is what we call the object's average velocity. We will use the notation vave[t1,t2]vave[t1,t2] to indicate average velocity over the time interval from t1 to t2. For instance, vave[1,3]vave[1,3] is the average velocity over the time interval from t=1 to t=3.
find V(ave) [0,3]
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A van merges onto a highway on-ramp with a velocity of 72 km/h and accelerates at a rate of 2.0 m/s² for 5.2 s. (a) What is the displacement of the van over this time? (b) What is the final velocity of the van?arrow_forwardAn object moves with constant acceleration 4.80 m/s² and over a time interval reaches a final velocity of 11.8 m/s. (a) If its original velocity is 5.90 m/s, what is its displacement during the time interval? m (b) What is the distance it travels during this interval? m (c) If its initial velocity is -5.90 m/s, what is its displacement during this interval? m (d) What is the total distance it travels during the interval in part (c)? marrow_forwardA particle is displaced 60 cm to the north and then is given a second displacement of 90 cm directly to the east. What is the average velocity of the particle if it covers the entire displacement within 2.15 seconds?arrow_forward
- Airbags are located on the dashboard of cars. In a collision, these bags expand rapidly to cushion the impact of the passenger. To avoid contact with the dashboard, the forward motion of the passenger has to stop in approximately 30 cm. For a car traveling at 50 mph, what is the magnitude of the average deceleration of the passenger?arrow_forwardThe velocity of a particle is given by v(t) =t² – 2t. The position of the particle at the time t = 0 is S(0) = 0. 1. Find a formula for the position S(t) at time t. 2. Find the displacement of the object on [0,3]. 3. Find the total distance traveled by the particle on [0,3].arrow_forwardA particle at t1=2.0s is at x1=4.3cm and at t2=4.5s is at x2=8.5cm. (a) What is its average velocity? (b) Can you calculate its average speed from these data? Explain. (Remember that to calculate the average speed, one needs the actual distance traveled).arrow_forward
- An object moves with constant acceleration 4.40 m/s2 and over a time interval reaches a final velocity of 11.0 m/s. (a) If its original velocity is 5.50 m/s, what is its displacement during the time interval? m(b) What is the distance it travels during this interval? m(c) If its initial velocity is −5.50 m/s, what is its displacement during this interval? m(d) What is the total distance it travels during the interval in part (c)?arrow_forward(a) Give two differences between average speed and average velocity. (b) For an object that undergoes some motion starting at one point and ending at different point, what does the average value of the speed (or velocity) tell you about the motion of the object on this trip and what does the instantaneous value of speed (or velocity) tell you about the motion of the object on this trip? (c) On a position versus time graph how do you determine the average velocity and the instantaneous velocity? (d) Illustrate your answer to (c) with a position versus time graph. (e) Why is the instantaneous speed always the magnitude of the instantaneous velocity?arrow_forwardConsider a particle moving along the x-axis. When t=4 s the position of the particle is known to be x-7 m. If its position changes to x=--13 m when t= 15 s. (All answers must be given with the appropriate units) 1. What the total distance the particle has traveled? d = 2. What is the displacement of the particle? Ax =arrow_forward
- An object is at x = 0 at t = 0 and moves along the x axis according to the velocity-time graph in the figure. (a) What is the acceleration of the object between 0 and 4s? (b) What is the acceleration of the object between 4s and 9s? (c) What is the acceleration of the object between 13s and 18s? (d) At what time(s) is the object moving with the lowest speed?arrow_forwardNow let’s apply our definition of average velocity to a swimming competition. During one heat of a swim meet, a swimmer performs the crawl stroke in a pool 50.0 mm long, as shown in (Figure 1). She swims a length at racing speed, taking 24.0 ss to cover the length of the pool. She then takes twice that time to swim casually back to her starting point. Find (a) her average velocity for each length and (b) her average velocity for the entire swim. c) If the swimmer could cross a 15 kmkm channel maintaining the same average velocity as for the first 50 mm in the pool, how long would it take?arrow_forwardA stone is dropped from rest from the top of a high rise. It takes t=3.4s for it to reach the ground. Express the displacement Y of any object traveling with the acceleration a during time period T that has an initial velocity Vi. Calculate the magnitude of y in meters.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY