COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 82QAP
To determine

(a)

The maximum altitude of the rocket.

Expert Solution
Check Mark

Answer to Problem 82QAP

The maximum altitude of the rocket is 1091.7m

Explanation of Solution

Given:

a1 = 2.00 m/s2

a2 = 3.00 m/s2

t1 = 15 sec

t2 = 12 sec

Formula used:

  H=ut+12at2

S = distance travelled

u = initial velocity

a = acceleration

t = time taken

Calculation:

During first stage, the height reached is,

  H1=ut1+12a1t12=0×4+12×2×162=256m

At the end of first stage speed is,

  v1=u+a1t1=0+2×16=32m/s

During second stage, the height reached is,

  H2=v1t2+12a2t22=32×12+12×3×122=600m

At the end of second stage speed is,

  v2=v1+a2t2=32+3×12=68m/s

At the end of second stage, the rocket will be under the effect of gravity, so it will continue to move upwards up to a point where its kinetic energy will be zero.

The time duration for reaching the maximum altitude from the end of second stage is,

  v3=v2gt30=68(9.8×t3)t3=689.8=6.938sec

The distance between the end of second stage and maximum altitude is,

  H3=v2t312gt32=68×6.93812×9.81×(6.938)2=235.7m

So, the maximum height is,

  H1=H1+H2+H3=256+600+235.7=1091.7m

To determine

(b)

The average speed and average velocity when the rocket fall back to launch pad.

Expert Solution
Check Mark

Answer to Problem 82QAP

The average speed is 44.69m/s and average velocity is 0.

Explanation of Solution

Given:

The maximum altitude is 1091.67m

Calculation:

Once rocket reaches the maximum height, it will start to fall and reach the launch pad on Earth surface.

The time duration taken by rocket to fall back is,

  H=v3t4+12×g×t421091.7m=0×t4+12×9.81×t42t4=14.91sec

Total time duration of flight,

  t=t1+t2+t3+t4=15+12+6.938+14.91=48.85sec

Total distance travelled is,

  Ht=H+H=2H=2×1091.7m=2183.4m

So average speed will be,

  S=2183.3448.85=44.69m/s

Since, the initial and final position of rocket is same, so the net displacement is zero. Therefore, the average velocity will be,

  v=Dit=0t=0m/s

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Can someone help me answer this physics 2 questions. Thank you.
Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μC
In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?

Chapter 2 Solutions

COLLEGE PHYSICS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY