Concept explainers
Careful measurements have been made of Olympic sprinters in the 100 meter dash. A simple but reasonably accurate model is that a sprinter accelerates at 3.6 m/s2 for
a. What is the race time for a sprinter who follows this model?
b. A sprinter could run a faster race by accelerating faster at the beginning, thus reaching top speed sooner. If a sprinter’s top speed is the same as in part a, what acceleration would he need to run the 100 meter dash in 9.9 s?
c. By what percent did the sprinter need to increase his acceleration in order to decrease his time by 1%?
Trending nowThis is a popular solution!
Chapter 2 Solutions
MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
- A cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?arrow_forwardA swan on a lake gets airborne by flapping its wings and running on top of the water. (a) If the swan must reach a velocity of 6.00 m/s to take off and it accelerates from rest at an average rate of 0.35m/s2 , how far will it travel before becoming airborne? (b) How long does this take?arrow_forwardA motorist drives for 35.0 minutes at 85.0 km/h and then stops for 15.0 minutes. He then continues north, traveling 130. Km in 2.00 h. (a) What is his total displacement? (b) What is his average velocity?arrow_forward
- An object that moves in one dimension has the velocity-versus-time graph shown in Figure P2.52. At time t = 0, the object has position x = 0. a. At time t = 5 s. is the acceleration of the object positive, negative, or zero? Explain. b. At time t = 8 s, is the object speeding up, showing down, or moving with constant speed? Explain. c. Write an expression for the position of the object as a function of time. Explain how you use the graph to obtain your answer. d. Use your expression from part (c) to determine the time (if any) at which the object reaches its maximum position. Check your results by examining the graph. Hint: To get started with finding the maximum of a function, take the derivative and set it equal to zero.arrow_forwardA speedboat travels in a straight line and increases in speed uniformly from i = 20.0 m/s to f = 30.0 m/s in displacement x of 200 m. We wish to find the time interval required for the boat to move through this displacement, (a) Draw a coordinate system for this situation, (b) What analysis model is most appropriate for describing this situation? (c) From the analysis model, what equation is most appropriate for finding the acceleration of the speedboat? (d) Solve the equation selected in part (c) symbolically for the boats acceleration in terms of i, f, and x. (e) Substitute numerical values lo obtain the acceleration numerically. (f) Find the time interval mentioned above.arrow_forwardAt the end of a race, a runner decelerates from a velocity of 9.00 m/s at a rate of 2.00 m/s2. (a) How far does she travel in the next 5.00 s? (b) What is her final velocity? (c) Evaluate the result. Does it make sense?arrow_forward
- (a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff with an initial velocity of 8.00 m/s. (b) How long would it take to reach the ground if it is thrown straight down with the same speed?arrow_forwardAn unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full stop after compressing the padding and his body 0.350 m. (a) What is his deceleration? (b) How long does the collision last?arrow_forward(a) A light-rail commuter train accelerates at a rate of 1.35m/s2 . How long does it take to reach its top speed of 80.0 km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of 1.65m/s2 . How long does it take to came to a stop from its top speed? (c) In emergencies, the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30 s. What is its emergency acceleration in meters per second sqquared?arrow_forward
- Physics Review A hockey player strikes a puck, giving it an initial velocity of 10.0 m/s in the positive x-direction. The puck slows uniformly to 6.00 m/s when it has traveled 40.0 m. (a) What is the pucks acceleration? (b) At what velocity is it traveling after 2.00 s? (c) How long does it take to travel 40.0 m? (See Section 2.5.)arrow_forwardStanding at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a height of 105 m. He can't see the rock right away but then does, 1.50 s later. (a) How far above the hiker is the rock when he can see it? (b) How much time does he have to move before the rock hits his head?arrow_forwardA student drives a moped along a straight road as described by the velocity-versus-time graph in Figure P2.12. Sketch this graph in the middle of a sheet of graph paper. (a) Directly above your graph, sketch a graph of the position versus time, aligning the time coordinates of the two graphs. (b) Sketch a graph of the acceleration versus time directly below the velocity-versus-time graph, again aligning the time coordinates. On each graph, show the numerical values of x and ax for all points of inflection. (c) What is the acceleration at t = 6.00 s? (d) Find the position (relative to the starting point) at t = 6.00 s. (e) What is the mopeds final position at t = 9.00 s? Figure P2.12arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning