Lecture- Tutorials for Introductory Astronomy
3rd Edition
ISBN: 9780321820464
Author: Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 7NEP
When the spacecraft is at the halfway point, how does the strength of the gravitational force on the spaceprobe by Earth compare with the strength of the gravitational force on the spaceprobe by Mars? Explain your reasoning.
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule03:40
Students have asked these similar questions
Write down an expression for the gravitational
filed strength of a planet of radius R and
II * II
density p. Please use
for products (e.g. B*A),
"/" for ratios (e.g. B/A) and the usual "+" and "-"
signs as appropriate without the quotes). For
Greek letters such as p and ↑ use rho and pi.
Please use the "Display response" button to
check you entered the answer you expect.
Write down an expression for the gravitational filed strength of a planet of radius R and density p. Please use "*" for products (e.g. B*A), "/" for ratios
(e.g. B/A) and the usual "+" and "-" signs as appropriate without the quotes). For Greek letters such as p and use rho and pi. For gravitational
constant, please use G. Please use the "Display response" button to check you entered the answer you expect.
Display response
Let's assume that the planet was originally orbiting around something with the mass of our Sun (and thus the mass of the planet is negligible). Now we will examine the case where the planet orbits a star with 8 times the mass of our Sun, but we will say that the dates listed in the diagram above are still accurate for indicating the planet's position as it orbits the new star. What is ratio of the size of the semimajor axis of the planet in this case compared to the original (aka how many times larger {ratio greater than 1} or smaller {ratio less than 1} is the new semimajor axis than the old one)?
Chapter 2 Solutions
Lecture- Tutorials for Introductory Astronomy
Ch. 2 - Does this planet obey Kepler's second law? How do...Ch. 2 - If you were carefully watching this planet during...Ch. 2 - Draw two lines: one connecting the planet at...Ch. 2 - Pick any two planet positions (C, D, E, F, G, H,...Ch. 2 - How would the time it takes the planet to travel...Ch. 2 - During which of the two time intervals for which...Ch. 2 - During which of the two time intervals for which...Ch. 2 - Does the planet appear to be traveling the same...Ch. 2 - At which position would the planet have been...Ch. 2 - At Position D, is the speed of the planet...
Ch. 2 - Provide a concise statement that describes the...Ch. 2 - Which of the three orbits shown below (A, B, or C)...Ch. 2 - Which of the listed objects would experience the...Ch. 2 - Describe the extent to which you think Earth's...Ch. 2 - Which of the two planets (Esus or Sulis) do you...Ch. 2 - If Esus and Sulis were to switch positions, would...Ch. 2 - Do you think the orbital period for Esus would...Ch. 2 - Imagine both Esus and Sulis were in orbit around...Ch. 2 - According to the graph, would you say that the...Ch. 2 - How far from the central star does a planet orbit...Ch. 2 - How long does it take a planet to complete one...Ch. 2 - Based on your results from Questions 6 and 7,...Ch. 2 - What is the name of the planet that you identified...Ch. 2 - Using the information provided in the table above...Ch. 2 - A student in your class makes the following...Ch. 2 - Review your answers to Questions 1-4. Do you still...Ch. 2 - Given that Earth is much larger and more massive...Ch. 2 - Prob. 2NEPCh. 2 - How would the strength of the force between the...Ch. 2 - On the diagram, clearly label the location where...Ch. 2 - On the diagram, clearly label the location where...Ch. 2 - Where would the spaceprobe experience the...Ch. 2 - When the spacecraft is at the halfway point, how...Ch. 2 - Two students are discussing their answer to the...Ch. 2 - If the spaceprobe had lost all ability to control...Ch. 2 - Imagine that you need to completely stop the...Ch. 2 - Your weight on Earth is simply the gravitational...Ch. 2 - Which value, apparent magnitude, or absolute...Ch. 2 - Prob. 2APPCh. 2 - Prob. 3APPCh. 2 - Prob. 4APPCh. 2 - The star Lee has an apparent magnitude of 0.1 and...Ch. 2 - Prob. 6APPCh. 2 - Prob. 7APPCh. 2 - Imagine that you are looking at the stars from...Ch. 2 - Repeat Question 1 for July and label the distant...Ch. 2 - In the box below, the same distant stars are shown...Ch. 2 - In the same box, draw another × to indicate the...Ch. 2 - Prob. 5THPCh. 2 - Prob. 6THPCh. 2 - Starting from Earth in January, draw a line...Ch. 2 - Prob. 8THPCh. 2 - Prob. 9THPCh. 2 - Is a parsec a unit of length or a unit of angle?...Ch. 2 - Prob. 11THPCh. 2 - Prob. 12THPCh. 2 - Prob. 13THPCh. 2 - Check your answers to Questions 6 and 11 and...Ch. 2 - What is the angle between you, the house, and the...Ch. 2 - You see the Moon on the horizon just above the...Ch. 2 - Compare your answers for the barn-house angle from...Ch. 2 - Do the angles from above tell you anything about...Ch. 2 - Prob. 5PAPCh. 2 - Prob. 6PAPCh. 2 - Prob. 7PAPCh. 2 - Prob. 8PAPCh. 2 - Prob. 9PAPCh. 2 - Prob. 10PAPCh. 2 - Prob. 11PAPCh. 2 - Prob. 12PAPCh. 2 - Prob. 13PAPCh. 2 - Which object will look brighter from Earth, the...Ch. 2 - Prob. 2SPEPCh. 2 - Star B has an apparent magnitude of 0, which tells...Ch. 2 - Prob. 4SPEPCh. 2 - Prob. 5SPEPCh. 2 - Prob. 6SPEPCh. 2 - Prob. 7SPEP
Additional Science Textbook Solutions
Find more solutions based on key concepts
16. Should the antireflection coating of a microscope objective lens designed for use with ultraviolet light be...
College Physics: A Strategic Approach (3rd Edition)
For a solid, we also define the linear thermal expansion coefficient, a, as the fractional increase in length p...
An Introduction to Thermal Physics
How do the arterioles react when you are running? When you are doing biceps curls? When you are sitting at your...
Conceptual Integrated Science
The focal length of the eyepiece.
Physics (5th Edition)
80. If you could clearly see the image of an object that was reflected by a mirage, the image would appear
A. M...
College Physics: A Strategic Approach (4th Edition)
65. Rank, from greatest to least, the speed of sound through: (a) air, (b) steel, (c) water.
Conceptual Physical Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Write down an expression for the gravitational filed strength of a planet of radius R and density ρ. Please use "*" for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate without the quotes). For Greek letters such as ?ρ and ?π use rho and pi. Please use the "Display response" button to check you entered the answer you expectarrow_forwardI need the answer as soon as possiblearrow_forwardYou are planning a dream vacation to Mars. For the orbital dynamics part of the vacation planning assume that Earth is in a circular orbit 1.00 AU from the Sun and Mars is in a circular orbit 1.52 AU from the Sun. Assume the the orbits of Earth and Mars are coplanar and that they go around the Sun the same way. The orbit you plan to use for your trip is an ellipse with the Sun at one focus (Kepler's 1st Law). The perihelion of the ellipse is at Earth's orbit at 1.00 AU and the aphelion is at Mars' orbit at 1.52 AU. Your spacecraft will go around the Sun in the same sense as Earth and Mars. The orbit you have chosen is called a Hohmann Transfer Orbit. A. What is the semi-major axis a of the spacecraft's orbit? What is the eccentricity of the spacecraft's orbit? B. What is the orbital period of the spacecraft? How long does it take to get to Mars? How long does it take to get back? C. When (at what Earth - Mars configuration) do you launch to go? In other words, where does Mars need to…arrow_forward
- Suppose you made a hole all the way through the middle of the earth. If you fell in the hole, would the force of gravity increase or decrease? If your acceleration due to gravity is 10m/s^2 when you enter the hole, what is the acceleration at the center of the earth (include direction)? What is the acceleration due to gravity when you exit the other side (include direction)?arrow_forwardWhat is the force of gravity between a keen physics student and Earth if the keen physics student is on a space walk (3.63x10^2) km above Earth's surface? Mass of keen physics student including space suit = (3.9x10^2) kg 24 ME = 5.98 x 10 kg rE = 6.38 x 106 m %3D (Note: the red writing below just means to input your answer in proper scientific notation, with 2 significant digits) Note: Your answer is assumed to be reduced to the highest power possible.arrow_forwardLet’s figure out the length of the space station’s trip as it travels once around the earth= length of orbit. The ISS is 230 miles above the earth. To find the circumference of the circular orbit, you will need to add the radius of earth to the 230 miles above the earth. What is the length in miles of its orbit?arrow_forward
- please quickly thanks !!!!arrow_forwardWhat is the force of gravity between a keen physics student and Earth if the keen physics student is on a space walk (3.78x10^2) km above Earth's surface? Mass of keen physics student including space suit = (3.9x10^2) kg 24 ME = 5.98 x 10 kg TE = 6.38 x 106 m (Note: the red writing below just means to input your answer in proper scientific notation, with 2 significant digits) Note: Your answer is assumed to be reduced to the highest power possible.arrow_forwardUse a distance of R = 1.48x10^11 meters for the distance between the earth and the sun. Use a mass of 1.99x10^30 kg to be 1 solar mass. For each of the different sun masses (as values of solar mass, aka 0.5 solar masses = 1x10^30 kg), as outlined in the lecture, calculate the period of the earth's orbit in days using Kepler's law for circular orbits (I double-checked it with these values and it works) and also calculate the corresponding orbital velocity of the earth. Questions: 1.) Using these values, and 6x10^24 kg for the mass of the earth, what is the strength of the gravitational force between the earth and the sun? 2.) If the earth were twice as far from the sun, what would be its period of orbit? 3.) Mars orbits the sun at a distance of 2.18x10^11 meters. How long is a Martian year, using Kepler's law for circular orbits?arrow_forward
- The International Space Station (ISS) orbits the Earth once every 7.2 hours. If the radius of the Earth is 3,958.8 miles and the mass of earth is 5.972 x 10 kg, calculate the altitude of the ISS above the surface of the Earth, in miles. Use G=6.674 x 10 11 Nm2/kg?. Write your answer in pure numbers, for example, 4567.8. Keep at least on digit after the decimal point. 24arrow_forwardEarth's orbit is (on average) 1 Astronomical Unit from the Sun. For reference, 1 Astronomical Unit is about 93 million miles. Jupiter's orbit is about 5 Astronomical Units from the Sun. Suppose that the gravitational force between the Earth and the Sun is equal to 50,000 N (it's way more than that but we are just pretending here). If we move Earth to Jupiter's orbit, what will be the new value of the gravitational force between the Earth and the Sun? Remember to include units of force (Newtons or N) in your answer.arrow_forwardPlease answer the question and subquestions entirely. This is one single question. According to the official guideline, I can ask two subquestions! Thank you! 1) Two bodies, masses m 1 and m 2, attract each other with force F. If one of the masses is doubled, the new gravitational force will be: 2 F F/2 F/4 4 F a) The value of g at an altitude above Earth equal to one Earth diameter is: 9.8 m/s2 4.9 m/s2 2.5 m/s2 1.9 m/s2 1.1 m/s2 b) The escape velocity at the surface of Earth is 11 km/s. What is the escape velocity at the surface of a planet whose radius is 4 times and whose mass is 100 times that of Earth? 1.60 km/s 8 km/s 55 km/s 200 km/s none of the abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY