
Concept explainers
(a)
Whether the rocket designed to be used to sample the local atmosphere for pollution, achieves its goal of reaching 20 km.
(a)

Answer to Problem 79P
The rocket reaches a height of
Explanation of Solution
Given:
The initial velocity of the rocket
The magnitude of its upward acceleration
Time during which the rocket accelerates upwards
The height the rocket should reach
Formula used:
The rocket accelerates upwards for a time
Assume a sign convention where the
The distance travelled by the rocket during this time period is given by the following expression:
At the end of the time interval
After a time
Here,
The total height travelled by the rocket is the sum of the two distances
Calculation:
Calculate the vertical distance
Using equation (2), calculate the value of the rocket’s speed
After the engines are switched off, the rocket decelerates due to the action of the acceleration of free fall. When it reaches the maximum point in its trajectory, its final velocity becomes zero.
Substitute
Therefore,
Calculate the maximum vertical distance travelled by the rocket by substituting the calculated values of
Conclusion:
The rocket was designed to sample air at a height of
For the rocket to reach
(b)
The total time the rocket is in air.
(b)

Answer to Problem 79P
The rocket is in air for a total time of
Explanation of Solution
Given:
The velocity of the rocket when engine is switched off
The total vertical distance travelled by the rocket.
Time during which the rocket accelerates upwards
Velocity at the point of maximum height
Formula used:
The time taken by the rocket to reach its maximum height after the engine is switched off is calculated using the expression:
When the rocket reaches the point of maximum height its velocity becomes zero and it starts to fall down.
The time taken by the rocket to fall is given by the following expression:
The negative sign shows that the displacement is made in the downward direction.
The total time the rocket is in air is the sum of (i) the time taken by it to accelerate upwards(ii) time taken to reach the maximum height after the engine is switched off and (iii) time taken to fall to the ground from the point of maximum height.
Therefore,
Calculation:
Substitute the given values of variables in equation (5) and calculate the time
Substitute the values of variables in equation (6) and calculate the time
Substitute the values of
Conclusion:
Thus, the rocket is in air for a total time of
(c)
To determine the speed of the rocket just before it hits the ground.
(c)

Answer to Problem 79P
The speed of the rocket just before it hits the ground is found to be
Explanation of Solution
Given:
The vertical distance the rocket falls from the point of maximum height.
Velocity at the point of maximum height
Time taken by the rocket to fall to the ground
Formula used:
The speed of the rocket when it just reaches the ground is calculated using the following expression:
Calculation:
Substitute the values of the variables in equation (8) and calculate the rocket’s speed when it hits the ground.
The negative sign shows that its velocity is directed downwards along the −y direction.
Conclusion:
Thus, the speed of the rocket just before it hits the ground is found to be
Want to see more full solutions like this?
Chapter 2 Solutions
Physics for Scientists and Engineers, Vol. 1
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





