Concept explainers
(a)
Whether the rocket designed to be used to sample the local atmosphere for pollution, achieves its goal of reaching 20 km.
(a)
Answer to Problem 79P
The rocket reaches a height of
Explanation of Solution
Given:
The initial velocity of the rocket
The magnitude of its upward acceleration
Time during which the rocket accelerates upwards
The height the rocket should reach
Formula used:
The rocket accelerates upwards for a time
Assume a sign convention where the
The distance travelled by the rocket during this time period is given by the following expression:
At the end of the time interval
After a time
Here,
The total height travelled by the rocket is the sum of the two distances
Calculation:
Calculate the vertical distance
Using equation (2), calculate the value of the rocket’s speed
After the engines are switched off, the rocket decelerates due to the action of the acceleration of free fall. When it reaches the maximum point in its trajectory, its final velocity becomes zero.
Substitute
Therefore,
Calculate the maximum vertical distance travelled by the rocket by substituting the calculated values of
Conclusion:
The rocket was designed to sample air at a height of
For the rocket to reach
(b)
The total time the rocket is in air.
(b)
Answer to Problem 79P
The rocket is in air for a total time of
Explanation of Solution
Given:
The velocity of the rocket when engine is switched off
The total vertical distance travelled by the rocket.
Time during which the rocket accelerates upwards
Velocity at the point of maximum height
Formula used:
The time taken by the rocket to reach its maximum height after the engine is switched off is calculated using the expression:
When the rocket reaches the point of maximum height its velocity becomes zero and it starts to fall down.
The time taken by the rocket to fall is given by the following expression:
The negative sign shows that the displacement is made in the downward direction.
The total time the rocket is in air is the sum of (i) the time taken by it to accelerate upwards(ii) time taken to reach the maximum height after the engine is switched off and (iii) time taken to fall to the ground from the point of maximum height.
Therefore,
Calculation:
Substitute the given values of variables in equation (5) and calculate the time
Substitute the values of variables in equation (6) and calculate the time
Substitute the values of
Conclusion:
Thus, the rocket is in air for a total time of
(c)
To determine the speed of the rocket just before it hits the ground.
(c)
Answer to Problem 79P
The speed of the rocket just before it hits the ground is found to be
Explanation of Solution
Given:
The vertical distance the rocket falls from the point of maximum height.
Velocity at the point of maximum height
Time taken by the rocket to fall to the ground
Formula used:
The speed of the rocket when it just reaches the ground is calculated using the following expression:
Calculation:
Substitute the values of the variables in equation (8) and calculate the rocket’s speed when it hits the ground.
The negative sign shows that its velocity is directed downwards along the −y direction.
Conclusion:
Thus, the speed of the rocket just before it hits the ground is found to be
Want to see more full solutions like this?
Chapter 2 Solutions
Physics for Scientists and Engineers, Vol. 1
- At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?arrow_forwardMake a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).arrow_forwardLab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forward
- Lab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forwardNo chatgpt pls will upvotearrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning