Concept explainers
(a)
To find: The magnitude of displacement in meters for the shaded box.
(a)
Answer to Problem 104P
The magnitude of displacement for the shaded region is
Explanation of Solution
Given:
The initial velocity on the box is
The final velocity on the box is
The time interval covered in one box is
Formula used:
The area of the velocity-time graph gives the displacement of the body.
Write the expression for the area of the shaded region.
Here,
Calculation:
Substitute
Conclusion:
Thus, the magnitude of displacement for the shaded region is
(b)
To find:The displacement between the two given time intervals of
(b)
Answer to Problem 104P
The displacement of the particle for the given
Explanation of Solution
Given:
The first
The second
Formula used:
The area of one block of the graph is
Write the expression for the displacement.
Here,
Calculation:
Substitute
Here,
Substitute
Here,
Conclusion:
Thus, the displacement of the particle for the given
(c)
To find:The average velocity of the particle for given time interval.
(c)
Answer to Problem 104P
The average velocity of the particle for the given time period is
Explanation of Solution
Given:
The distance covered in the first interval is
The distance covered in the second interval is
Formula used:
The area of one block of the graph is
The average velocity is defined as the total displacement in the given time period.
Write expression for total displacement of the particle.
…... (3)
Here,
Write the expression for the average velocity of the particle.
Here,
Calculation:
Substitute
Substitute
Conclusion:
Thus, the average velocity of the particle for the given time period is
(d)
To explain: The average displacement of the particle for the given time period and compare it with the answer of part (b) and to compare the average velocity to the mean of initial and final velocity of the particle.
(d)
Answer to Problem 104P
The displacement of the particle for the interval
Explanation of Solution
Given:
The equation of curve is
The time interval is
Formula used:
Write the expression for the velocity of particle.
Rearrange the above expression for
Integrate the above expression from
Write an expression for the mean of initial and final velocity.
Calculation:
Substitute
Substitute
Conclusion:
Thus, the displacement of the particle for the interval
Want to see more full solutions like this?
Chapter 2 Solutions
Physics for Scientists and Engineers, Vol. 1
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill