Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 106P
To determine
The expression for the position, velocity and acceleration of the object.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the magnitude and the direction of the displacement in each of the following problems, using both graphical (geometric) method and trigonometric solutions.A motorist drives 1.50 km west, and then turns 2.10 km at 15° E of S. (1 cm: 0.3 km)
find the area velocity of a particle moving along the path r= a cos w t i + b sin w t j, where a, b and w are constant and t is time.
template: (1/2)a b w k.
The velocity of an object is given by,
= u + at
V
ds
dt.
where, u is the initial velocity, a is the
acceleration, and ₺ is the time in seconds.
Solve the differential equation to obtain the
displacement, s, given that at t = 0, s = 7
(metres)
:
1
if u = 3 ms ¹, a = 2.4 ms 2, calculate the
displacements at t = 4.9 seconds.
Give your answer to 2 decimal places.
Chapter 2 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60PCh. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 66PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Prob. 91PCh. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Prob. 106PCh. 2 - Prob. 107PCh. 2 - Prob. 108PCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Prob. 112PCh. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - Prob. 115PCh. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Prob. 118PCh. 2 - Prob. 119PCh. 2 - Prob. 120PCh. 2 - Prob. 121PCh. 2 - Prob. 122P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A point particle of mass m = 1.8 kg moves according to the position function: r(t) = xtai + ytbj + ztck, where t denotes time and x, y, z, a, b, and c are constants such that the exponents are positive integers and the position function has the dimension of length. Part (a) We can write the particle’s velocity function in the form v(t) = ntdi + otej + ptgk. Enter an expression for n in terms of x, y, z, a, b, and c. Part (b) The particle’s velocity function will have the form v(t) = ntdi + otej + ptgk. Enter an expression for d in terms of x, y, z, a, b, and c. Part (c) Here is a set of parameter values for the motion of the particle: m = 1.8 kg, x = 1.8 m/s0, y = 2.4 m/s1, z = 0.15 m/s2, a = 0, b = 1, c = 2. Calculate the x-component of the particle’s angular momentum, in units of kg˙m2/s, about the origin at time t = 1 s. Part (d) Use the same set of parameter values (m = 1.8 kg, x = 1.8 m/s0, y = 2.4 m/s1, z = 0.15 m/s2, a = 0, b = 1, c = 2) to calculate the y-component of…arrow_forwardThe acceleration of a particle is defined as the relation a = αt-4. Knowing that v = 4m/s when t = 2s and v = -1 m/s when t = 1s, Determine the constant ‘α’. Write the equation of motion when x = 0 at t = 3s.arrow_forwardAn objects position in the x-direction as a function of time is given by the expression: x(t)=5t^2 + 2t where are quantities have proper SI units. What's the objects average velocity in the x-direction between the times t=1.15s and t=2.07s. (Just enter the number rounded to 3 significant figures and assume it has proper SI units)arrow_forward
- The coordinates of a bird flying in the xy-plane are given by x(t) = ααt and y(t) = 3.0 m - ββt2 where αα= 2.4 m/s and ββ = 1.2 m/s2. (a) Sketch the velocity and acceleration vectors at t = 2.0 s. At this instant, is the bird speeding up, is it slowing down, or is its speed instantaneously not changing? Is the bird turning? If so, in what direction?arrow_forwardThe magnitudes of displacements a and b are 24 m and 6 m. respectively, what is (a) the maximum possible magnitude for c and (b) the minimum possible magnitude?arrow_forwardQuestion 2-9: Choose from the choices below how you would find the vector representing the change in velocity Av between the times t3 and t4 (at 2 and 3 s) in the diagram above. (Hint: Remember that the change in velocity is the final velocity minus the initial velocity, and the vector difference is the same as the sum of one vector and the negative of the other vector.) V4 A V3 Δν V4 -V3 B C V4 -V3 Δν Δν B Question 2-10: Based on the direction of this vector and the direction of the positive y axis, what is the sign of the acceleration +, 0 or -? Positive Negative Zeroarrow_forward
- Find the magnitude and the direction of the displacement in each of the following problems, using both graphical (geometric) method and trigonometric solutions. A man walks 450 meters at 35° S of E, and then turns and walks westward 150 meters. (1 cm: 50 m)arrow_forwardSuppose that A>and B>have nonzero magnitude. Is it possible forA>+ B>to be zero?arrow_forwardThe figure shows the path taken by a drunk skunk over level ground, from initial point i to final point f. The angles are 01-32.0°, e2 = 49.0°, and 03 = 84.0°, and the distances are di 4.80 m, d2 = 7.30 m, and d3 = 10.0 m. What are the (a) magnitude and (b) angle of the skunk's displacement from i to f? Give the angle as a positive (counterclockwise) or negative (clockwise) angle of magnitude less than 180°, measured from the +x direction. dz dg (a) Number 5.586 Units (b) Number 135 Units * (degrees)arrow_forward
- Let V1 = -6.4 i^ + 8.1 j^ and V2 = -4.5 j^ + 4.4 i^. Determine the direction of V2. Express your answer using two significant figures.arrow_forwardA recent high-precision determination of g has a quoted error of 6 parts in 10°. Estimate the increase in height at the Earth's surface which gives a change in g equal to this error. If the dependence of g on geographical latitude at sea level is given by 8 = 80(1 + Bsin? 4), where o is the latitude and B is a dimensionless constant with a valuc of 0.0053, estimate the northward displacement near latitude 45° which gives a change in g equal to the quoted error.arrow_forward(a) What are the coordinates of the initial position of the stone? x0 = m y0 = m (b) What are the components of the initial velocity? v0x = m/s v0y = m/s (c) Write the equations for the x- and y-components of the velocity of the stone with time. (Use the following as necessary: t. Let the variable t be measured in seconds. Do not include units in your answer.) vx = vy =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY