Consider the flow of a fluid with viscosity μ through a circular pipe. The velocity profile in the pipe is given as u ( r ) = u max ( 1 − r n / R n ) , where u max is the maximum flow velocity, which occurs at the centerline; r is the radial distance from the centerline; and u(r) is the flow velocity at any position r. Develop a relation for the drag force exerted on the pipe wall by the fluid in the flow direction per unit length of the pipe. Figure P2-75
Consider the flow of a fluid with viscosity μ through a circular pipe. The velocity profile in the pipe is given as u ( r ) = u max ( 1 − r n / R n ) , where u max is the maximum flow velocity, which occurs at the centerline; r is the radial distance from the centerline; and u(r) is the flow velocity at any position r. Develop a relation for the drag force exerted on the pipe wall by the fluid in the flow direction per unit length of the pipe. Figure P2-75
Consider the flow of a fluid with viscosity
μ
through a circular pipe. The velocity profile in the pipe is given as
u
(
r
)
=
u
max
(
1
−
r
n
/
R
n
)
, where
u
max
is the maximum flow velocity, which occurs at the centerline; r is the radial distance from the centerline; and u(r) is the flow velocity at any position r. Develop a relation for the drag force exerted on the pipe wall by the fluid in the flow direction per unit length of the pipe.
۳/۱
العنوان
O
не
شكا
+91x PU + 96852
A heavy car plunges into a lake during an accident and lands at the bottom of the lake
on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of
Deine the hadrostatic force on the
Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required
motion is as follows;
1- Rising 60 mm in 135° with uniform acceleration and retardation motion.
2- Dwell 90°
3- Falling 60 mm for 135° with Uniform acceleration-retardation motion.
Then design the cam profile to give the above displacement diagram if the minimum circle
diameter of the cam is 50 mm.
=
-20125
750 x2.01
Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required
motion is as follows;
1- Rising 60 mm in 135° with uniform acceleration and retardation motion.
2- Dwell 90°
3- Falling 60 mm for 135° with Uniform acceleration-retardation motion.
Then design the cam profile to give the above displacement diagram if the minimum circle
diameter of the cam is 50 mm.
Q1/ A vertical, circular gate with water on one side as shown. Determine
the total resultant force acting on the gate and the location of the center of
pressure, use water specific weight 9.81 kN/m³
1 m
4 m
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.