
Concept explainers
(a)
Interpretation:
The percentage of mass contributed by neutrons in Carbon-12 is to be calculated.
Concept Introduction:

Answer to Problem 73P
Neutrons contribute 50% of mass in carbon-12.
Explanation of Solution
The
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Carbon-12 nucleus is 6.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of carbon-12 is calculated as.
Putting the values in the above equation.
(b)
Interpretation:
Percentage of mass contributed by neutrons in Calcium-40 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 73P
Neutrons contribute 50% of mass in calcium-40.
Explanation of Solution
The atomic number of Calcium is 20, and the atomic mass is 40.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Calcium-40 nucleus is 20.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Calcium-40 is calculated as.
Putting the values in the above equation.
(c)
Interpretation:
Percentage of mass contributed by neutrons in Iron-55 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 73P
Neutrons contribute 52.72% of mass in Iron-55.
Explanation of Solution
The atomic number of Iron is 26, and the atomic mass is 55.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Iron-55 nucleus is 26.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Iron-55is calculated as.
Putting the values in the above equation.
(d)
Interpretation:
Percentage of mass contributed by neutrons in Bromine-79 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 73P
Neutrons contribute 55.69% of mass in Bromine-79.
Explanation of Solution
The atomic number of Bromine-79 is 35, and the atomic mass is 79.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Bromine-79 nucleus is 35.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Bromine-79 is calculated as.
Putting the values in the above equation.
(e)
Interpretation:
Percentage of mass contributed by neutrons in Platinum-195 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 73P
Neutrons contribute 60% of mass in Platinum-195.
Explanation of Solution
The atomic number of Platinum-195 is 78, and the atomic mass is 195.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Platinum-195 nucleus is 78.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Platinum is calculated as.
Putting the values in the above equation.
(f)
Interpretation:
Percentage of mass contributed by neutrons in Uranium-238 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 73P
Neutrons contribute 61.34% of mass in Uranium-238.
Explanation of Solution
The atomic number of Uranium-238 is 92, and the atomic mass is 238.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Uranium-238 nucleus is 92.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Uranium-238 is calculated as.
Putting the values in the above equation.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction To General, Organic, And Biochemistry
- Basic strength of organic bases.arrow_forwardNucleophilic Aromatic Substitution: What is the product of the reaction? What is the name of the intermediate complex? *See imagearrow_forwardPredict the final product. If 2 products are made, list which should be “major” and “minor” *see attachedarrow_forward
- Nucleophilic Aromatic Substitution: What is the product of the reaction? *see imagearrow_forwardShow the correct sequence to connect the reagent to product. * see imagearrow_forwardThe answer here says that F and K have a singlet and a doublet. The singlet and doublet are referring to the H's 1 carbon away from the carbon attached to the OH. Why don't the H's two carbons away, the ones on the cyclohexane ring, cause more peaks on the signal?arrow_forward
- Draw the Birch Reduction for this aromatic compound and include electron withdrawing groups and electron donating groups. *See attachedarrow_forwardShow the correct sequence to connect the reagent to product. * see imagearrow_forwardBlocking Group are use to put 2 large sterically repulsive group ortho. Show the correct sequence toconnect the reagent to product with the highest yield possible. * see imagearrow_forward
- Elimination-Addition: What molecule was determined to be an intermediate based on a “trapping experiment”? *please solve and see imagearrow_forwardShow the correct sequence to connect the reagent to product. * see imagearrow_forwardPredict the final product. If 2 products are made, list which should be “major” and “minor”. **see attachedarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





