
Concept explainers
(a)
Interpretation:
Based on your knowledge of periodic table and its trends identify / classify the given elements as metals, metalloids and non metals.
Argon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Argon: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Argon: It is a non metal and it cannot lose electron easily.
(b)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Boron.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Boron: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Boron: metalloid, the ionization potential is in between metal and non metals.
(c)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Lead.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Lead: Metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Lead: Metal (
(d)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Arsenic.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Arsenic: Metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Arsenic: Metalloid, the ionization potential is in between metal and non metals.
(e)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Potassium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Potassium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Potassium: metal (alkali metals can easily lose outermost electron to gain noble gas configuration).
(f)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Silicon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Silicon: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Silicon: metalloid, the ionization potential is in between metal and non metals.
(g)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Iodine.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Iodine: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Iodine: non metal, need one electron to attain noble gas configuration so have high electron gain enthalpy (negative).
(h)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Antimony.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Antimony: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Antimony: metalloid, the ionization potential is in between metal and non metals.
(i)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Vanadium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Vanadium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Vanadium: Metal (transition metals have low ionization potential and are metals).
(j)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Sulfur.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Sulfur: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Sulfur: non metal, cannot lose electron easily.
(k)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Nitrogen.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 41P
Nitrogen: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Nitrogen: non metal, cannot lose electron easily.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction To General, Organic, And Biochemistry
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. 0.035 atm ✓ G 00. 18 Ararrow_forwardHighlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area. HO- HO- -0 OH OH HO NG HO- HO- OH OH OH OH NG OHarrow_forward€ + Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn it into the product of the reaction. Also, write the name of the product molecule under the drawing area. Name: ☐ H C=0 X H- OH HO- H HO- -H CH₂OH ×arrow_forward
- Draw the Haworth projection of the disaccharide made by joining D-glucose and D-mannose with a ẞ(1-4) glycosidic bond. If the disaccharide has more than one anomer, you can draw any of them. Click and drag to start drawing a structure. Xarrow_forwardEpoxides can be opened in aqueous acid or aqueous base to produce diols (molecules with two OH groups). In this question, you'll explore the mechanism of epoxide opening in aqueous acid. 2nd attempt Be sure to show all four bonds at stereocenters using hash and wedge lines. 0 0 Draw curved arrows to show how the epoxide reacts with hydronium ion. 100 +1: 1st attempt Feedback Be sure to show all four bonds at stereocenters using hash and wedge lines. See Periodic Table See Hint H A 5 F F Hr See Periodic Table See Hintarrow_forward03 Question (1 point) For the reaction below, draw both of the major organic products. Be sure to consider stereochemistry. > 1. CH₂CH₂MgBr 2. H₂O 3rd attempt Draw all four bonds at chiral centers. Draw all stereoisomers formed. Draw the structures here. e 130 AN H See Periodic Table See Hint P C Brarrow_forward
- You may wish to address the following issues in your response if they are pertinent to the reaction(s) you propose to employ:1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Please make it in detail and draw it out too in what step what happens. Thank you for helping me!arrow_forward1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Everything in detail and draw out and write it.arrow_forwardCalculating the pH at equivalence of a titration 3/5 Izabella A chemist titrates 120.0 mL of a 0.7191M dimethylamine ((CH3)2NH) solution with 0.5501 M HBr solution at 25 °C. Calculate the pH at equivalence. The pk of dimethylamine is 3.27. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HBr solution added. pH = ☐ ✓ 18 Ar Boarrow_forward
- Alcohols can be synthesized using an acid-catalyzed hydration of an alkene. An alkene is combined with aqueous acid (e.. sulfuric acid in water). The reaction mechanism typically involves a carbocation intermediate. > 3rd attempt 3343 10 8 Draw arrows to show the reaction between the alkene and hydronium ion. that 2nd attempt Feedback 1st attempt تعمال Ju See Periodic Table See Hint F D Ju See Periodic Table See Hintarrow_forwardDraw the simplified curved arrow mechanism for the reaction of acetone and CHgLi to give the major product. 4th attempt Π Draw the simplified curved arrow mechanism T 3rd attempt Feedback Ju See Periodic Table See Hint H -H H -I H F See Periodic Table See Hintarrow_forwardSelect the correct reagent to accomplish the first step of this reaction. Then draw a mechanism on the Grignard reagent using curved arrow notation to show how it is converted to the final product. 4th attempt Part 1 (0.5 point) Select the correct reagent to accomplish the first step of this reaction. Choose one: OA Mg in ethanol (EtOH) OB. 2 Li in THF O C. Li in THF D. Mg in THF O E Mg in H2O Part 2 (0.5 point) Br Part 1 Bri Mg CH B CH, 1 Draw intermediate here, but no arrows. © TE See Periodic Table See Hint See Hint ין Harrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





