University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 2, Problem 67P
The print in many books averages 3.50 mm in height. How high is the image of the print on the retina when the book is held 30.0 cm from the eye?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 2 Solutions
University Physics Volume 3
Ch. 2 - What are the differences between real and virtual...Ch. 2 - Can you see a virtual image? Explain your...Ch. 2 - Can you photograph a virtual image?Ch. 2 - Can you project a virtual image onto a screen?Ch. 2 - Is it necessary to project a real image onto a...Ch. 2 - Devise an arrangement of mirrors allowing you to...Ch. 2 - If you wish to see your entire body in a flat...Ch. 2 - At what distance is an image always located: at...Ch. 2 - Under what circumstances will an image be located...Ch. 2 - What is meant by a negative magnification? What is...
Ch. 2 - Can an image be larger than the object even though...Ch. 2 - Derive the formula for the apparent depth of a...Ch. 2 - Use a ruler and a protractor to find the image by...Ch. 2 - You can argue that a that piece of glass, such as...Ch. 2 - When you focus a camera, you adjust the distance...Ch. 2 - A thin lens has two focal points, one on either...Ch. 2 - Will the focal length of a lens change when it is...Ch. 2 - If the lens of a person’s eye is removed because...Ch. 2 - When laser light is shone into a relaxed...Ch. 2 - Why is your vision so blurry when you open your...Ch. 2 - It has become common to replace the...Ch. 2 - If the cornea is to be reshaped (this can be done...Ch. 2 - Geometric optics describes the interaction of...Ch. 2 - The image produced by the microscope in Figure...Ch. 2 - If you want your microscope or telescope to...Ch. 2 - Consider a pair of flat mirrors that are...Ch. 2 - Consider a pair of flat mirrors that are...Ch. 2 - By using more than one flat mirror, construct a...Ch. 2 - The following figure shows a light bulb between...Ch. 2 - Why are diverging mirrors often used for rearview...Ch. 2 - Some telephoto cameras use a mirror rather than a...Ch. 2 - Calculate the focal length of a mirror formed by...Ch. 2 - Electric room heaters use a concave mirror to...Ch. 2 - Find the magnification of the heater element in...Ch. 2 - What is the focal length of a makeup mirror that...Ch. 2 - A shopper standing 3.00 m from a convex security...Ch. 2 - An object 1.50 cm high is held 3.00 cm from a...Ch. 2 - Ray tracing for a flat mirror shows that the image...Ch. 2 - Show that, for a flat mirror, hi=ho, given that...Ch. 2 - Use the law of reflection to prove that the focal...Ch. 2 - Referring to the electric room heater considered...Ch. 2 - Two mirrors are inclined at an angle of 60 ° and...Ch. 2 - Two parallel mirrors are facing each other and are...Ch. 2 - An object is located in air 30 cm from the vertex...Ch. 2 - An object is located in air 30 cm from the vertex...Ch. 2 - An object is located in water 15 cm from the...Ch. 2 - An object is located in water 30 cm from the...Ch. 2 - An object is located in air 5 cm from the vertex...Ch. 2 - Derive the spherical interface equation for...Ch. 2 - How far from the lens must the film in a camera...Ch. 2 - A certain slide projector has a 100 mm-focal...Ch. 2 - A doctor examines a mole with a 15.0-cm focal...Ch. 2 - A camera with a 50.0-mm focal length lens is being...Ch. 2 - A camera lens used for taking close-up photographs...Ch. 2 - Suppose your 50.0 mm-focal length camera lens is...Ch. 2 - What is the focal length of a magnifying glass...Ch. 2 - The magnification of a book held 7.50 cm from a...Ch. 2 - Suppose a 200 mm-focal length telephoto lens is...Ch. 2 - A camera with a 100 mm-focal length lens is used...Ch. 2 - Use the thin—lens equation to show that the...Ch. 2 - An object of height 3.0 cm is placed 5.0 cm in...Ch. 2 - An object of height 3.0 cm is placed at 5.0 cm in...Ch. 2 - Au object of height 3.0 cm is placed at 25 cm in...Ch. 2 - Two convex lenses of focal lengths 20 cm and 10 cm...Ch. 2 - What is the power of the eye when viewing an...Ch. 2 - Calculate the power of the eye when viewing an...Ch. 2 - The print in many books averages 3.50 mm in...Ch. 2 - Suppose a certain person’s visual acuity is such...Ch. 2 - People who do very detailed work close up, such as...Ch. 2 - What is the far point of a person whose eyes have...Ch. 2 - What is the near point of a person whose eyes have...Ch. 2 - (a) A laser reshaping the cornea of a myopic...Ch. 2 - The power for normal close vision is 54.0 D. In a...Ch. 2 - For normal distant vision, the eye has a power of...Ch. 2 - The power for normal distant vision is 50.0 D. A...Ch. 2 - A student’s eyes, while reading the blackboard,...Ch. 2 - The power of a physician’s eyes is 53.0 D while...Ch. 2 - The normal power for distant vision is 50.0 D. A...Ch. 2 - The far point of a myopic administrator is 50.0...Ch. 2 - A very myopic man has a far point of 20.0 cm. What...Ch. 2 - Repeat the previous problem for eyeglasses held...Ch. 2 - A myopic person sees that her contact lens...Ch. 2 - Repeat the previous problem for glasses that are...Ch. 2 - The contact lens prescription for a mildly...Ch. 2 - If the image formed on the retina subtends an...Ch. 2 - What is the magnification of a magnifying lens...Ch. 2 - How far should you hold a 2.1 cm-focal length...Ch. 2 - You hold a 5.0 cm-focal length magnifying glass as...Ch. 2 - You view a mountain with a magnifying glass of...Ch. 2 - You view an object by holding a 2.5 cm-focal...Ch. 2 - A magnifying glass forms an image 10 cm on the...Ch. 2 - An object viewed with the naked eye subtends a 2°...Ch. 2 - For a normal, relaxed eye, a magnifying glass...Ch. 2 - What range of magnification is possible with a 7.0...Ch. 2 - A magnifying glass produces an angular...Ch. 2 - A microscope with an overall magnification of 800...Ch. 2 - (a) What magnification is produced by a 0.150...Ch. 2 - Where does an object need to be placed relative to...Ch. 2 - An amoeba is 0.305 cm away from the 0.300 cm-...Ch. 2 - Unreasonable Results Your friends show you an...Ch. 2 - What is the angular magnification of a telescope...Ch. 2 - Find the distance between the objective and...Ch. 2 - A large reflecting telescope has an objective...Ch. 2 - A small telescope has a concave mirror with a...Ch. 2 - A 7.5 binocular produces an angular magnification...Ch. 2 - Construct Your Own Problem Consider a telescope of...Ch. 2 - Trace rays to find which way the given ray will...Ch. 2 - Copy and draw rays to find the final image in the...Ch. 2 - A concave mirror of radius of curvature 10 cm is...Ch. 2 - An object of height 3 cm is placed at 25 cm in...Ch. 2 - An object of height 3 cm is placed at a distance...Ch. 2 - An object of height 2 cm is placed at 50 cm in...Ch. 2 - Two concave mirrors are placed facing each other....Ch. 2 - A lamp of height S cm is placed 40 cm in front of...Ch. 2 - Parallel rays from a faraway source strike a...Ch. 2 - Parallel rays from a faraway source strike a...Ch. 2 - A light bulb is placed 10 cm from a plane mirror,...Ch. 2 - A point source of light is 50 cm in front of a...Ch. 2 - Copy and trace to find how a horizontal ray from S...Ch. 2 - Copy and trace how a horizontal ray from S comes...Ch. 2 - Copy and draw rays to figure out the final image.Ch. 2 - By ray tracing or by calculation, find the place...Ch. 2 - A diverging lens has a focal length of 20 cm. What...Ch. 2 - Two lenses of focal lengths of f1and f2are glued...Ch. 2 - What will be the angular magnification of a convex...Ch. 2 - What will be the formula for the angular...Ch. 2 - Use a ruler and a protractor to draw rays to find...Ch. 2 - Where should a 3 cm tall object be placed in front...Ch. 2 - A 3 cm tall object is placed 5 cm in front of a...Ch. 2 - You are looking for a mirror so that you can see a...Ch. 2 - Derive the following equation for a convex mirror:...Ch. 2 - (a) Draw rays to form the image of a vertical...Ch. 2 - Use another ray-tracing diagram for the same...Ch. 2 - You photograph a 2.0-m-tall person with a camera...Ch. 2 - Find the focal length of a thin plano-convex lens....Ch. 2 - Find the focal length of a meniscus lens with...Ch. 2 - A nearsighted man cannot see objects clearly...Ch. 2 - A mother sees that her child’s contact lens...Ch. 2 - Repeat the previous problem for glasses that are...Ch. 2 - The contact-lens prescription for a nearsighted...Ch. 2 - Unreasonable Results A boy has a near point of 50...Ch. 2 - Find the angular magnification of an image by a...Ch. 2 - Let objective and eyepiece of a compound...Ch. 2 - Draw rays to scale to locate the image at the...Ch. 2 - The objective and the eyepiece of a microscope...Ch. 2 - A far-sighted person has a near point of 100 cm....Ch. 2 - A near-sighted person has afar point of 80 cm. (a)...Ch. 2 - In a reflecting telescope the objective is a...Ch. 2 - Two stars that are 109km apart are viewed by a...Ch. 2 - What is the angular size of the Moon if viewed...Ch. 2 - An unknown planet at a distance of 1012 m from...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object viewed with the naked eye subtends a 2° angle. If you view the object through a 10 x magnifying glass, what angle is subtended by the image formed on your retina?arrow_forwardWhat is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forwardThe end of a solid glass rod of refractive index 1.50 is polished to have the shape of a hemispherical surface of radius 1.0 cm. A small object is placed in air (refractive index 1.00) on the axis 5.0 cm to the left of the vertex. Determine the position of the image.arrow_forward
- You view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of 10 ?arrow_forwardHow far should you hold a 2.1 cm-focal length magnifying glass from an object to obtain a magnification of 10 x ? Assume you place your eye 5.0 cm from the magnifying glass.arrow_forwardWhat is the focal length of a magnifying glass that produces a magnification of 3.00 when held 5.00 cm from an object, such as a rare coin?arrow_forward
- . A person looks at a statue that is 2 m tall. The image on the persons retina is inverted and 0.005 m high. What is the magnification?arrow_forwardThe radius of curvature of the left-hand face of a flint glass biconvex lens (n = 1.60) has a magnitude of 8.00 cm, and the radius of curvature of the right-hand face has a magnitude of 11.0 cm. The incident surface of a biconvex lens is convex regardless of which side is the incident side. What is the focal length of the lens if light is incident on the lens from the left?arrow_forwardIn Figure P35.30, a thin converging lens of focal length 14.0 cm forms an image of the square abed, which is he = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c. and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb, represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P35.30arrow_forward
- You hold a 5.0 cm-focal length magnifying glass as close as possible to your eye. If you have a normal near point, what is the magnification?arrow_forwardA nearsighted man cannot see objects clearly beyond 20 cm from his eyes. How close must he stand to a mirror in order to see what he is doing when he shaves?arrow_forwardFigure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY