University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 50P
How far from the lens must the film in a camera be, if the lens has a 35.0-mm focal length and is being used to photograph a flower 75.0 cm away? Explicitly show how you follow the steps in the Problem-solving strategy: Lenses.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .
An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Chapter 2 Solutions
University Physics Volume 3
Ch. 2 - What are the differences between real and virtual...Ch. 2 - Can you see a virtual image? Explain your...Ch. 2 - Can you photograph a virtual image?Ch. 2 - Can you project a virtual image onto a screen?Ch. 2 - Is it necessary to project a real image onto a...Ch. 2 - Devise an arrangement of mirrors allowing you to...Ch. 2 - If you wish to see your entire body in a flat...Ch. 2 - At what distance is an image always located: at...Ch. 2 - Under what circumstances will an image be located...Ch. 2 - What is meant by a negative magnification? What is...
Ch. 2 - Can an image be larger than the object even though...Ch. 2 - Derive the formula for the apparent depth of a...Ch. 2 - Use a ruler and a protractor to find the image by...Ch. 2 - You can argue that a that piece of glass, such as...Ch. 2 - When you focus a camera, you adjust the distance...Ch. 2 - A thin lens has two focal points, one on either...Ch. 2 - Will the focal length of a lens change when it is...Ch. 2 - If the lens of a person’s eye is removed because...Ch. 2 - When laser light is shone into a relaxed...Ch. 2 - Why is your vision so blurry when you open your...Ch. 2 - It has become common to replace the...Ch. 2 - If the cornea is to be reshaped (this can be done...Ch. 2 - Geometric optics describes the interaction of...Ch. 2 - The image produced by the microscope in Figure...Ch. 2 - If you want your microscope or telescope to...Ch. 2 - Consider a pair of flat mirrors that are...Ch. 2 - Consider a pair of flat mirrors that are...Ch. 2 - By using more than one flat mirror, construct a...Ch. 2 - The following figure shows a light bulb between...Ch. 2 - Why are diverging mirrors often used for rearview...Ch. 2 - Some telephoto cameras use a mirror rather than a...Ch. 2 - Calculate the focal length of a mirror formed by...Ch. 2 - Electric room heaters use a concave mirror to...Ch. 2 - Find the magnification of the heater element in...Ch. 2 - What is the focal length of a makeup mirror that...Ch. 2 - A shopper standing 3.00 m from a convex security...Ch. 2 - An object 1.50 cm high is held 3.00 cm from a...Ch. 2 - Ray tracing for a flat mirror shows that the image...Ch. 2 - Show that, for a flat mirror, hi=ho, given that...Ch. 2 - Use the law of reflection to prove that the focal...Ch. 2 - Referring to the electric room heater considered...Ch. 2 - Two mirrors are inclined at an angle of 60 ° and...Ch. 2 - Two parallel mirrors are facing each other and are...Ch. 2 - An object is located in air 30 cm from the vertex...Ch. 2 - An object is located in air 30 cm from the vertex...Ch. 2 - An object is located in water 15 cm from the...Ch. 2 - An object is located in water 30 cm from the...Ch. 2 - An object is located in air 5 cm from the vertex...Ch. 2 - Derive the spherical interface equation for...Ch. 2 - How far from the lens must the film in a camera...Ch. 2 - A certain slide projector has a 100 mm-focal...Ch. 2 - A doctor examines a mole with a 15.0-cm focal...Ch. 2 - A camera with a 50.0-mm focal length lens is being...Ch. 2 - A camera lens used for taking close-up photographs...Ch. 2 - Suppose your 50.0 mm-focal length camera lens is...Ch. 2 - What is the focal length of a magnifying glass...Ch. 2 - The magnification of a book held 7.50 cm from a...Ch. 2 - Suppose a 200 mm-focal length telephoto lens is...Ch. 2 - A camera with a 100 mm-focal length lens is used...Ch. 2 - Use the thin—lens equation to show that the...Ch. 2 - An object of height 3.0 cm is placed 5.0 cm in...Ch. 2 - An object of height 3.0 cm is placed at 5.0 cm in...Ch. 2 - Au object of height 3.0 cm is placed at 25 cm in...Ch. 2 - Two convex lenses of focal lengths 20 cm and 10 cm...Ch. 2 - What is the power of the eye when viewing an...Ch. 2 - Calculate the power of the eye when viewing an...Ch. 2 - The print in many books averages 3.50 mm in...Ch. 2 - Suppose a certain person’s visual acuity is such...Ch. 2 - People who do very detailed work close up, such as...Ch. 2 - What is the far point of a person whose eyes have...Ch. 2 - What is the near point of a person whose eyes have...Ch. 2 - (a) A laser reshaping the cornea of a myopic...Ch. 2 - The power for normal close vision is 54.0 D. In a...Ch. 2 - For normal distant vision, the eye has a power of...Ch. 2 - The power for normal distant vision is 50.0 D. A...Ch. 2 - A student’s eyes, while reading the blackboard,...Ch. 2 - The power of a physician’s eyes is 53.0 D while...Ch. 2 - The normal power for distant vision is 50.0 D. A...Ch. 2 - The far point of a myopic administrator is 50.0...Ch. 2 - A very myopic man has a far point of 20.0 cm. What...Ch. 2 - Repeat the previous problem for eyeglasses held...Ch. 2 - A myopic person sees that her contact lens...Ch. 2 - Repeat the previous problem for glasses that are...Ch. 2 - The contact lens prescription for a mildly...Ch. 2 - If the image formed on the retina subtends an...Ch. 2 - What is the magnification of a magnifying lens...Ch. 2 - How far should you hold a 2.1 cm-focal length...Ch. 2 - You hold a 5.0 cm-focal length magnifying glass as...Ch. 2 - You view a mountain with a magnifying glass of...Ch. 2 - You view an object by holding a 2.5 cm-focal...Ch. 2 - A magnifying glass forms an image 10 cm on the...Ch. 2 - An object viewed with the naked eye subtends a 2°...Ch. 2 - For a normal, relaxed eye, a magnifying glass...Ch. 2 - What range of magnification is possible with a 7.0...Ch. 2 - A magnifying glass produces an angular...Ch. 2 - A microscope with an overall magnification of 800...Ch. 2 - (a) What magnification is produced by a 0.150...Ch. 2 - Where does an object need to be placed relative to...Ch. 2 - An amoeba is 0.305 cm away from the 0.300 cm-...Ch. 2 - Unreasonable Results Your friends show you an...Ch. 2 - What is the angular magnification of a telescope...Ch. 2 - Find the distance between the objective and...Ch. 2 - A large reflecting telescope has an objective...Ch. 2 - A small telescope has a concave mirror with a...Ch. 2 - A 7.5 binocular produces an angular magnification...Ch. 2 - Construct Your Own Problem Consider a telescope of...Ch. 2 - Trace rays to find which way the given ray will...Ch. 2 - Copy and draw rays to find the final image in the...Ch. 2 - A concave mirror of radius of curvature 10 cm is...Ch. 2 - An object of height 3 cm is placed at 25 cm in...Ch. 2 - An object of height 3 cm is placed at a distance...Ch. 2 - An object of height 2 cm is placed at 50 cm in...Ch. 2 - Two concave mirrors are placed facing each other....Ch. 2 - A lamp of height S cm is placed 40 cm in front of...Ch. 2 - Parallel rays from a faraway source strike a...Ch. 2 - Parallel rays from a faraway source strike a...Ch. 2 - A light bulb is placed 10 cm from a plane mirror,...Ch. 2 - A point source of light is 50 cm in front of a...Ch. 2 - Copy and trace to find how a horizontal ray from S...Ch. 2 - Copy and trace how a horizontal ray from S comes...Ch. 2 - Copy and draw rays to figure out the final image.Ch. 2 - By ray tracing or by calculation, find the place...Ch. 2 - A diverging lens has a focal length of 20 cm. What...Ch. 2 - Two lenses of focal lengths of f1and f2are glued...Ch. 2 - What will be the angular magnification of a convex...Ch. 2 - What will be the formula for the angular...Ch. 2 - Use a ruler and a protractor to draw rays to find...Ch. 2 - Where should a 3 cm tall object be placed in front...Ch. 2 - A 3 cm tall object is placed 5 cm in front of a...Ch. 2 - You are looking for a mirror so that you can see a...Ch. 2 - Derive the following equation for a convex mirror:...Ch. 2 - (a) Draw rays to form the image of a vertical...Ch. 2 - Use another ray-tracing diagram for the same...Ch. 2 - You photograph a 2.0-m-tall person with a camera...Ch. 2 - Find the focal length of a thin plano-convex lens....Ch. 2 - Find the focal length of a meniscus lens with...Ch. 2 - A nearsighted man cannot see objects clearly...Ch. 2 - A mother sees that her child’s contact lens...Ch. 2 - Repeat the previous problem for glasses that are...Ch. 2 - The contact-lens prescription for a nearsighted...Ch. 2 - Unreasonable Results A boy has a near point of 50...Ch. 2 - Find the angular magnification of an image by a...Ch. 2 - Let objective and eyepiece of a compound...Ch. 2 - Draw rays to scale to locate the image at the...Ch. 2 - The objective and the eyepiece of a microscope...Ch. 2 - A far-sighted person has a near point of 100 cm....Ch. 2 - A near-sighted person has afar point of 80 cm. (a)...Ch. 2 - In a reflecting telescope the objective is a...Ch. 2 - Two stars that are 109km apart are viewed by a...Ch. 2 - What is the angular size of the Moon if viewed...Ch. 2 - An unknown planet at a distance of 1012 m from...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
Match the people in column A to their contribution toward the advancement of microbiology, in column B. Column ...
Microbiology: An Introduction
In Drosophila, a heterozygous female for the X-linked recessive traits a, b, and c was crossed to a male that p...
Concepts of Genetics (12th Edition)
In mechanism, photophosphorylation is most similar to A. substrate-level phosphorylation in glycolysis. B. oxid...
Campbell Biology in Focus (2nd Edition)
Chlorine has two isotopes, 35Cl and 37Cl; 75.77% of chlorine is 35Cl, and 24.23% is 37Cl. The atomic mass of 35...
Organic Chemistry (8th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY