University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 135AP
Find the focal length of a thin plano-convex lens. The front surface of this lens is flat, and the rear surface has a radius of curvature of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't known
2. Consider the situation described in problem 1 where light emerges horizontally from ground level.
Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height
of y = 1.5 m.
2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net
disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m
and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3
Chapter 2 Solutions
University Physics Volume 3
Ch. 2 - What are the differences between real and virtual...Ch. 2 - Can you see a virtual image? Explain your...Ch. 2 - Can you photograph a virtual image?Ch. 2 - Can you project a virtual image onto a screen?Ch. 2 - Is it necessary to project a real image onto a...Ch. 2 - Devise an arrangement of mirrors allowing you to...Ch. 2 - If you wish to see your entire body in a flat...Ch. 2 - At what distance is an image always located: at...Ch. 2 - Under what circumstances will an image be located...Ch. 2 - What is meant by a negative magnification? What is...
Ch. 2 - Can an image be larger than the object even though...Ch. 2 - Derive the formula for the apparent depth of a...Ch. 2 - Use a ruler and a protractor to find the image by...Ch. 2 - You can argue that a that piece of glass, such as...Ch. 2 - When you focus a camera, you adjust the distance...Ch. 2 - A thin lens has two focal points, one on either...Ch. 2 - Will the focal length of a lens change when it is...Ch. 2 - If the lens of a person’s eye is removed because...Ch. 2 - When laser light is shone into a relaxed...Ch. 2 - Why is your vision so blurry when you open your...Ch. 2 - It has become common to replace the...Ch. 2 - If the cornea is to be reshaped (this can be done...Ch. 2 - Geometric optics describes the interaction of...Ch. 2 - The image produced by the microscope in Figure...Ch. 2 - If you want your microscope or telescope to...Ch. 2 - Consider a pair of flat mirrors that are...Ch. 2 - Consider a pair of flat mirrors that are...Ch. 2 - By using more than one flat mirror, construct a...Ch. 2 - The following figure shows a light bulb between...Ch. 2 - Why are diverging mirrors often used for rearview...Ch. 2 - Some telephoto cameras use a mirror rather than a...Ch. 2 - Calculate the focal length of a mirror formed by...Ch. 2 - Electric room heaters use a concave mirror to...Ch. 2 - Find the magnification of the heater element in...Ch. 2 - What is the focal length of a makeup mirror that...Ch. 2 - A shopper standing 3.00 m from a convex security...Ch. 2 - An object 1.50 cm high is held 3.00 cm from a...Ch. 2 - Ray tracing for a flat mirror shows that the image...Ch. 2 - Show that, for a flat mirror, hi=ho, given that...Ch. 2 - Use the law of reflection to prove that the focal...Ch. 2 - Referring to the electric room heater considered...Ch. 2 - Two mirrors are inclined at an angle of 60 ° and...Ch. 2 - Two parallel mirrors are facing each other and are...Ch. 2 - An object is located in air 30 cm from the vertex...Ch. 2 - An object is located in air 30 cm from the vertex...Ch. 2 - An object is located in water 15 cm from the...Ch. 2 - An object is located in water 30 cm from the...Ch. 2 - An object is located in air 5 cm from the vertex...Ch. 2 - Derive the spherical interface equation for...Ch. 2 - How far from the lens must the film in a camera...Ch. 2 - A certain slide projector has a 100 mm-focal...Ch. 2 - A doctor examines a mole with a 15.0-cm focal...Ch. 2 - A camera with a 50.0-mm focal length lens is being...Ch. 2 - A camera lens used for taking close-up photographs...Ch. 2 - Suppose your 50.0 mm-focal length camera lens is...Ch. 2 - What is the focal length of a magnifying glass...Ch. 2 - The magnification of a book held 7.50 cm from a...Ch. 2 - Suppose a 200 mm-focal length telephoto lens is...Ch. 2 - A camera with a 100 mm-focal length lens is used...Ch. 2 - Use the thin—lens equation to show that the...Ch. 2 - An object of height 3.0 cm is placed 5.0 cm in...Ch. 2 - An object of height 3.0 cm is placed at 5.0 cm in...Ch. 2 - Au object of height 3.0 cm is placed at 25 cm in...Ch. 2 - Two convex lenses of focal lengths 20 cm and 10 cm...Ch. 2 - What is the power of the eye when viewing an...Ch. 2 - Calculate the power of the eye when viewing an...Ch. 2 - The print in many books averages 3.50 mm in...Ch. 2 - Suppose a certain person’s visual acuity is such...Ch. 2 - People who do very detailed work close up, such as...Ch. 2 - What is the far point of a person whose eyes have...Ch. 2 - What is the near point of a person whose eyes have...Ch. 2 - (a) A laser reshaping the cornea of a myopic...Ch. 2 - The power for normal close vision is 54.0 D. In a...Ch. 2 - For normal distant vision, the eye has a power of...Ch. 2 - The power for normal distant vision is 50.0 D. A...Ch. 2 - A student’s eyes, while reading the blackboard,...Ch. 2 - The power of a physician’s eyes is 53.0 D while...Ch. 2 - The normal power for distant vision is 50.0 D. A...Ch. 2 - The far point of a myopic administrator is 50.0...Ch. 2 - A very myopic man has a far point of 20.0 cm. What...Ch. 2 - Repeat the previous problem for eyeglasses held...Ch. 2 - A myopic person sees that her contact lens...Ch. 2 - Repeat the previous problem for glasses that are...Ch. 2 - The contact lens prescription for a mildly...Ch. 2 - If the image formed on the retina subtends an...Ch. 2 - What is the magnification of a magnifying lens...Ch. 2 - How far should you hold a 2.1 cm-focal length...Ch. 2 - You hold a 5.0 cm-focal length magnifying glass as...Ch. 2 - You view a mountain with a magnifying glass of...Ch. 2 - You view an object by holding a 2.5 cm-focal...Ch. 2 - A magnifying glass forms an image 10 cm on the...Ch. 2 - An object viewed with the naked eye subtends a 2°...Ch. 2 - For a normal, relaxed eye, a magnifying glass...Ch. 2 - What range of magnification is possible with a 7.0...Ch. 2 - A magnifying glass produces an angular...Ch. 2 - A microscope with an overall magnification of 800...Ch. 2 - (a) What magnification is produced by a 0.150...Ch. 2 - Where does an object need to be placed relative to...Ch. 2 - An amoeba is 0.305 cm away from the 0.300 cm-...Ch. 2 - Unreasonable Results Your friends show you an...Ch. 2 - What is the angular magnification of a telescope...Ch. 2 - Find the distance between the objective and...Ch. 2 - A large reflecting telescope has an objective...Ch. 2 - A small telescope has a concave mirror with a...Ch. 2 - A 7.5 binocular produces an angular magnification...Ch. 2 - Construct Your Own Problem Consider a telescope of...Ch. 2 - Trace rays to find which way the given ray will...Ch. 2 - Copy and draw rays to find the final image in the...Ch. 2 - A concave mirror of radius of curvature 10 cm is...Ch. 2 - An object of height 3 cm is placed at 25 cm in...Ch. 2 - An object of height 3 cm is placed at a distance...Ch. 2 - An object of height 2 cm is placed at 50 cm in...Ch. 2 - Two concave mirrors are placed facing each other....Ch. 2 - A lamp of height S cm is placed 40 cm in front of...Ch. 2 - Parallel rays from a faraway source strike a...Ch. 2 - Parallel rays from a faraway source strike a...Ch. 2 - A light bulb is placed 10 cm from a plane mirror,...Ch. 2 - A point source of light is 50 cm in front of a...Ch. 2 - Copy and trace to find how a horizontal ray from S...Ch. 2 - Copy and trace how a horizontal ray from S comes...Ch. 2 - Copy and draw rays to figure out the final image.Ch. 2 - By ray tracing or by calculation, find the place...Ch. 2 - A diverging lens has a focal length of 20 cm. What...Ch. 2 - Two lenses of focal lengths of f1and f2are glued...Ch. 2 - What will be the angular magnification of a convex...Ch. 2 - What will be the formula for the angular...Ch. 2 - Use a ruler and a protractor to draw rays to find...Ch. 2 - Where should a 3 cm tall object be placed in front...Ch. 2 - A 3 cm tall object is placed 5 cm in front of a...Ch. 2 - You are looking for a mirror so that you can see a...Ch. 2 - Derive the following equation for a convex mirror:...Ch. 2 - (a) Draw rays to form the image of a vertical...Ch. 2 - Use another ray-tracing diagram for the same...Ch. 2 - You photograph a 2.0-m-tall person with a camera...Ch. 2 - Find the focal length of a thin plano-convex lens....Ch. 2 - Find the focal length of a meniscus lens with...Ch. 2 - A nearsighted man cannot see objects clearly...Ch. 2 - A mother sees that her child’s contact lens...Ch. 2 - Repeat the previous problem for glasses that are...Ch. 2 - The contact-lens prescription for a nearsighted...Ch. 2 - Unreasonable Results A boy has a near point of 50...Ch. 2 - Find the angular magnification of an image by a...Ch. 2 - Let objective and eyepiece of a compound...Ch. 2 - Draw rays to scale to locate the image at the...Ch. 2 - The objective and the eyepiece of a microscope...Ch. 2 - A far-sighted person has a near point of 100 cm....Ch. 2 - A near-sighted person has afar point of 80 cm. (a)...Ch. 2 - In a reflecting telescope the objective is a...Ch. 2 - Two stars that are 109km apart are viewed by a...Ch. 2 - What is the angular size of the Moon if viewed...Ch. 2 - An unknown planet at a distance of 1012 m from...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
2. List the subdivisions of the thoracic and abdominopelvic cavities.
Human Anatomy & Physiology (2nd Edition)
For the generic equilibrium HA(aq) ⇌ H + (aq) + A- (aq), which of these statements is true?
The equilibrium con...
Chemistry: The Central Science (14th Edition)
In Figure 12.14, why do the nuclei resulting from experiment 2 contain different amounts of DNA?
Campbell Biology (11th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY