College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 65AP
In Chapter 5 we will define the center of mass of an object The center of mass moves with constant acceleration when constant forces act on the object A gymnast jumps straight up, with her center of mass moving at 2.80 m/s as she leaves the ground. How high above this point is her center of mass (a) 0.100 s, (b) 0.200 s, (c) 0.300 s, and (d) 0.500 s thereafter?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 2 Solutions
College Physics
Ch. 2.2 - Figure 2.4 shows the unusual path of a confused...Ch. 2.3 - True or False? (a) A car must always have an...Ch. 2.3 - Parts (a), (b), and (c) of Figure 2.10 represent...Ch. 2.4 - The three graphs in Figure 2.13 represent the...Ch. 2.4 - Figure 2.14a is a diagram of a multiflash image of...Ch. 2.6 - A tennis player on serve tosses a ball straight...Ch. 2.6 - As the tennis ball of Quick Quiz 2.6 travels...Ch. 2.6 - A skydiver jumps out of a hovering helicopter. A...Ch. 2 - Math Review Solve the quadratic equation 2.00t2 6...Ch. 2 - Math Review Solve the following two equations for...
Ch. 2 - Math Review Solve the following two equations for...Ch. 2 - A football player runs from his own goal line to...Ch. 2 - A ball is thrown downward from the top of a 40.0 m...Ch. 2 - An arrow is shot straight up in the air at an...Ch. 2 - A red ball is dropped from rest at a height of...Ch. 2 - If the velocity of a particle is nonzero, can the...Ch. 2 - If the velocity of a particle is zero, can the...Ch. 2 - If a car is traveling eastward, can its...Ch. 2 - (a) Can the equations in Table 2.4 be used in a...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Figure CQ2.6 shows strobe photographs taken of a...Ch. 2 - (a) Can the instantaneous velocity of an object at...Ch. 2 - A ball is thrown vertically upward. (a) What are...Ch. 2 - Consider the following combinations of signs and...Ch. 2 - A ball rolls in a straight line along the...Ch. 2 - An object moves along the x-axis, its position...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A juggler throws a bowling pin straight up in the...Ch. 2 - A racing car starts from rest and reaches a final...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - Light travels at a speed of about 3 103 m/s. (a)...Ch. 2 - A person travels by car from one city to another...Ch. 2 - The current indoor world record time in the 200-m...Ch. 2 - Two boats start together and race across a...Ch. 2 - A graph of position versus time for a certain...Ch. 2 - A motorist drives for 35.0 minutes at 85.0 km/h...Ch. 2 - A tennis player moves in a straight-line path as...Ch. 2 - A jet plane has a takeoff speed of v0 = 75 m/s and...Ch. 2 - Two cars travel in the same direction along a...Ch. 2 - The cheetah can reach a top speed of 114 km/h (71...Ch. 2 - An athlete swims the length L of a pool in a time...Ch. 2 - A person lakes a trip, driving with a constant...Ch. 2 - A tortoise can run with a speed of 0.10 m/s, and a...Ch. 2 - To qualify for the finals in a racing event, a...Ch. 2 - Prob. 16PCh. 2 - A graph of position versus time for a certain...Ch. 2 - A race car moves such that, its position fits the...Ch. 2 - Runner A is initially 4.0 mi west of a flagpole...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A 50.0-g Super Ball traveling at 25.0 m/s bounces...Ch. 2 - The average person passes out at an acceleration...Ch. 2 - A certain car is capable of accelerating at a rate...Ch. 2 - The velocity vs. time graph for an object moving...Ch. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - PROBLEM A race car starting from rest accelerates...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In 1865 Jules Verne proposed sending men to the...Ch. 2 - A truck covers 40.0 m in 8.50 s while uniformly...Ch. 2 - A speedboat increases its speed uniformly from vi...Ch. 2 - A Cessna aircraft has a liftoff speed of 120....Ch. 2 - An object moves with constant acceleration 4.00...Ch. 2 - In a test run, a certain car accelerates uniformly...Ch. 2 - A jet plane lands with a speed of 100 m/s and can...Ch. 2 - Speedy Sue, driving at 30.0 m/s, enters a one-lane...Ch. 2 - A record of travel along a straight path is as...Ch. 2 - A train is traveling down a straight track at 20...Ch. 2 - A car accelerates uniformly from rest to a speed...Ch. 2 - A car starts from rest and travels for 5.0 s with...Ch. 2 - A car starts from rest and travels for t1 seconds...Ch. 2 - In the Daytona 500 auto race, a Ford Thunderbird...Ch. 2 - A certain cable car in San Francisco can stop in...Ch. 2 - A hockey player is standing on his skates on a...Ch. 2 - A train 4.00 102 m long is moving on a straight...Ch. 2 - A ball is thrown vertically upward with a speed of...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - A certain freely falling object, released from...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Traumatic brain injury such as concussion results...Ch. 2 - A small mailbag is released from a helicopter that...Ch. 2 - A tennis player tosses a tennis ball straight up...Ch. 2 - A package is dropped from a helicopter that is...Ch. 2 - A model rocket is launched straight upward with an...Ch. 2 - A baseball is hit so that it travels straight...Ch. 2 - A truck tractor pulls two trailers, one behind the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A bullet is fired through a board 10.0 cm thick in...Ch. 2 - A speedboat moving at 30.0 m/s approaches a...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - An insect called the froghopper (Philaenus...Ch. 2 - Prob. 62APCh. 2 - A ball is thrown upward from the ground with an...Ch. 2 - To pass a physical education class at a...Ch. 2 - In Chapter 5 we will define the center of mass of...Ch. 2 - Two students air on a balcony a distance h above...Ch. 2 - You drop a ball from a window on an upper floor of...Ch. 2 - The driver of a truck slams on the brakes when he...Ch. 2 - Emily challenges her husband, David, to catch a 1...Ch. 2 - A mountain climber stands at the top of a 50.0-m...Ch. 2 - An ice sled powered by a rocket engine sum from...Ch. 2 - In Bosnia, the ultimate test of a young nuns...Ch. 2 - Prob. 73APCh. 2 - A glider on an air track carries a flag of length ...Ch. 2 - A stuntman sitting on a tree limb wishes to drop...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P9.59a shows an overhead view of the configuration of two pucks of mass In on frictionless ice. The pucks are tied together with a string of length 1' and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance 4 and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d, e, and in? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy?arrow_forwardThe figure below shows a bullet of mass 200 g traveling horizontally towards the east with speed 400 m/s, which strikes a block of mass 1.5 kg that is initially at rest on a frictionless table. After striking the block, the bullet is embedded in the block and the block and the bullet move together as one unit. a. What is the magnitude and direction of the velocity of the block/bullet combination immediately after the impact? b. What is the magnitude and direction of the impulse by the block on the bullet? c. What is the magnitude and direction of the impulse from the bullet on the block? d. If it took 3 ms for the bullet to change the speed from 400 m/s to the final speed after impact, what is the average force between the block and the bullet during this time?arrow_forwardProfessional Application Two manned satellites approaching one another, at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4.00103 kg, and the second a mass of 7.50103 kg (a) Calculate the final velocity (after docking) by using the frame of reference in which the first satellite was originally at rest. (b) What is the loss of kinetic energy in this inelastic collision? (c) Repeat both parts by using the frame of reference in which the second satellite was originally at rest. Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.arrow_forward
- Two particles of masses m1 and m2 move uniformly in different circles of radii R1 and R1 about the origin in the x, y-plane. The coordinates of the two particles in meters are given as follows ( z=0 for both). Here t is in seconds: x1(t)=4cos(2t) y1(t)=4sin(2t) x2(t)=2cos(3t2) y2(t)=2sin(3t2) a. Find the radii of the circles of motion of both particles. b. Find the x- and y-coordinates of the center of mass. c. Decide if the center of mass moves in a circle by plotting its trajectory.arrow_forwardA 0.0250-kg bullet is accelerated from rest to a speed of 550 m/s in a 3.00-kg rifle. The pain of the rifle's kick is much worse if you hold the gun loosely a few centimeters from your shoulder rather than holding it tightly against your shoulder. (a) Calculate the recoil velocity of the rifle if it is held loosely away from the shoulder. (b) How much kinetic energy does the rifle gain? (c) What is the recoil velocity if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg? (d) How much kinetic energy is transferred to the rifle shoulder combination? The pain is related to the amount of kinetic energy, which is significantly less in this latter situation. (e) Calculate the momentum of a 110-kg football player running at 8.00 m/s. Compare the player's momentum with the momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s. Discuss its relationship to this problem.arrow_forwardYou are coasting on your 10-kg bicycle at 15 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 2.0 m/s in the same direction as you. If your mass is 60 kg, (a) what is the initial momentum of you plus your bicycle? (b) What is the initial momentum of the bug? (c) What is your change in velocity due to the collision with the bug? (d) What would the change in velocity have been if the bug were traveling in the opposite direction?arrow_forward
- (a) What is the mass of a large ship that has a momentum of 1.60109kgm/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship's momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.arrow_forwardTwo carts on a straight track collide head on. The first cart was moving at 3.6 m/s in the positive x direction and the second was moving at 2.4 m/s in the opposite direction. After the collision, the second car continues moving in its initial direction of motion at 0.24 m/s. If the mass of the second car is 5.0 times that of the first, what is the mass and final velocity of the first car?arrow_forwardA bullet with a mass of 0.01 kg is tired horizontally into a block of wood hanging on a string. The bullet sticks in the wood and causes it to swing upward to a height of 0.1 m. If the mass of the wood block is 2 kg, what was the initial speed of the bullet?arrow_forward
- Center of Mass Revisited N Find the center of mass of a system with three particles of masses 1.0 kg, 2.0 kg, and 3.0 kg kept at the vertices of an equilateral triangle of side 1.0 m (Fig. P10.15). FIGURE P10.15arrow_forwardAn object that has a small mass and an object that has a large mass have the same momentum. Which object has the largest kinetic energy?arrow_forwardAn astronaut out on a spacewalk to construct a new section of the International Space Station walks with a constant velocity of 2.00 m/s on a flat sheet of metal placed on a flat, frictionless, horizontal honeycomb surface linking the two parts of the station. The mass of the astronaut is 75.0 kg, and the mass of the sheet of metal is 245 kg. a. What is the velocity of the metal sheet relative to the honeycomb surface? b. What is the speed of the astronaut relative to the honeycomb surface?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY