Figure 2.4 shows the unusual path of a confused football player. After receiving a kickoff at his own goal, he runs downfield to within inches of a touchdown, then reverses direction and races back until he’s tackled at the exact location where he first caught the ball. During this run, which took 25 s, what is (a) the total distance he travels, (b) his displacement, and (c) his average velocity in the x-direction? (d) What is his average speed?FIGURE 2.4 The path followed by a confused football player.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Figure 2.4 shows the unusual path of a confused football player. After receiving a kickoff at his own goal, he runs downfield to within inches of a touchdown, then reverses direction and races back until he’s tackled at the exact location where he first caught the ball. During this run, which took 25 s, what is (a) the total distance he travels, (b) his displacement, and (c) his average velocity in the x-direction? (d) What is his average speed?
FIGURE 2.4 The path followed by a confused football player.
Step by step
Solved in 2 steps with 2 images