(a)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(b)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(c)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(d)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(e)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
OWLv2 6-Months Printed Access Card for Kotz/Treichel/Townsend's Chemistry & Chemical Reactivity, 9th, 9th Edition
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardIn three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forward
- In the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY