![OWLv2 6-Months Printed Access Card for Kotz/Treichel/Townsend's Chemistry & Chemical Reactivity, 9th, 9th Edition](https://www.bartleby.com/isbn_cover_images/9781285460680/9781285460680_smallCoverImage.jpg)
(a)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(b)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(c)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(d)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
(e)
Interpretation:
The formulas of the given ionic compounds are needed to be determined.
Concept introduction:
Ionic compounds are formed by electrostatic attraction between ions such as monoatomic ions and polyatomic ions; in which positively charged ions is known as cations and negatively charged ions are known as anions.
Naming of ions:
Positive ions (cations) are named as metal name, example: aluminum for aluminum cation.
But, for the transition metals the ionic charge also included by roman numerals with the naming of compound. The polyatomic cation
Negative ions (anions) are named by adding ‘ide’ to the stem of the nonmetal element from which the anion is formed, example: chloride, bromide, etc. in case of poly anions, the oxoanions series is named by checking the number of oxygen atom is present in it. If the oxoanion is having greater number of oxygen, then suffix will be ‘ate’. If the number of oxygen atom is less, then the suffix will be ‘ite’. And if the oxoanio is having more than elements, then prefix will be added as ‘per’ with suffix ‘ate’ ions and ‘hypo’ with suffix ‘ite’ of the oxoanions. The hydrogen containing oxoanions are named by adding ‘hydrogen’ before the name of anion part.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 2 Solutions
OWLv2 6-Months Printed Access Card for Kotz/Treichel/Townsend's Chemistry & Chemical Reactivity, 9th, 9th Edition
- Q10: (a) Propose a synthesis of C from A. (b) Propose a synthesis of C from B. Br Br ...\SCH 3 A B Carrow_forward9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forwardComplete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forward
- QUESTION 3: Provide the synthetic steps that convert the starting material into the product (no mechanism required). HO OH NH CH3 multiple steps 요요 H3Carrow_forwardQ6: Predict the effect of the changes given on the rate of the reaction below. CH3OH CH3Cl + NaOCH3 → CH3OCH3 + NaCl a) Change the substrate from CH3CI to CH31: b) Change the nucleophile from NaOCH 3 to NaSCH3: c) Change the substrate from CH3CI to (CH3)2CHCI: d) Change the solvent from CH3OH to DMSO.arrow_forwardQ3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. a) CI Cl فيكم H3C-Cl A B C D Br Br b) A B C Br H3C-Br Darrow_forward
- Q2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forwardSuppose the rate of evaporation in a hot, dry region is 1.76 meters per year, and the seawater there has a salinity of 35 ‰. Assuming a 93% yield, how much salt (NaCl) can be harvested each year from 1 km2 of solar evaporation ponds that use this seawater as a source?arrow_forwardhelparrow_forward
- Explain why only the lone pairs on the central atom are taken into consideration when predicting molecular shapearrow_forward(ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)