Concept explainers
Astronauts on a distant planet toss a rock into the air. With the aid of a camera that takes pictures at a steady rate, they record the rock’s height as a function of time as given in the following table. (a) Find the rock’s average velocity in the time interval between each measurement and the next. (b) Using these average velocities to approximate instantaneous velocities at the midpoints of the time intervals, make a graph of velocity as a function of time. (c) Does the rock move with constant acceleration? If so, plot a straight line of best fit on the graph and calculate its slope to find the acceleration.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- The acceleration of an object (in m/s2) is given by the function a ( t ) = 5 sin ( t ). The initial velocity of the object is v ( 0 ) = − 9 m/s. Round your answers to four decimal places. a) Find an equation v(t) for the object velocity. b) Find the object's displacement (in meters) from time 0 to time 3. c) Find the total distance traveled by the object from time 0 to time 3.arrow_forwardAn object, at time equal zero, has a velocity of 2.0 m/s and constant acceleration of 3.08 m/s². How far does it travel in 8 seconds? Do not write the units in your answer, but your answer should be in meters.arrow_forwardIf it takes a horse 175 seconds to make 3.00 laps around a horse track (each lap is equal to 1.00 km), what was the horse's average velocity in m/s when he crosses the start/finish line? Be sure to answer to the correct number of significant digits and include units.arrow_forward
- A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward, followed again by 8 steps forward and 5 steps backward, and so on. Each step is 1 m long and requires 1s. Plot the x-t graph of his motion. Determine graphically and otherwise how long the drunkard takes to fall in a pit 15 m away from the start.arrow_forwardThe graph above shows the acceleration of a cart as a function of time during a 7-second period. The numbers on the vertical axis have intentionally been left blank. The cart starts at the origin with a velocity of zero and an acceleration of zero. The acceleration increases (in the positive direction) at a steady rate for 4.0 seconds, when the acceleration reaches a value of 4 meters per second squared. The acceleration is then zero for the remaining 3.0 seconds. What is the position of the cart (in meters) when t = 5.3 seconds?arrow_forwardAn object is moving in the air (defying gravity) so that its height after t seconds is given by ℎ(t)=18sin(t)cos(t)+8t meters. (If you graph this function, you can see it's moving up and down, but going higher and higher as time goes on.) a) At what time, t, does the object first change direction from going up to going down? b) What is the acceleration (m/s^2) of the object at that same time?arrow_forward
- A student performs a simple experiment to find the average acceleration of a falling object. He drops a baseball from a building and uses a string and meter stick to measure the height the ball was dropped. He uses a stopwatch to find an average time of fall for 3 trials from the same height and reports the following data: h =5.25 ± 0.15 m, t = 1.14 ± 0.06 S. a) Use the equation a = 2h/t2 to determine the average acceleration and its uncertainty. b) Comment on the accuracy of the acceleration result. Do you think the student made any mistakes? c) What one suggestion would you tell this student to improve the experimental result? Please explain.arrow_forwardA car begins at the position x = 6.0.m with an initial velocity of 24.8 m/s. If the acceleration of the car is -2.80 m/s^2 find the position of the car after 2.70s in m. Just input the number in the answer box, don't input units. Also, note that the acceleration is negative here, so the car is slowing down.arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forward
- In this graph of displacement versus time, what is the average velocity in going from point B to point J in m/s? (Assume that the vertical axis is given in meters and that the horizontal axis is given in seconds) The answer is not 0.25arrow_forwardAt time t = 0 s, an object is observed at x = 0 m; and its position along the x axis follows this expression: x = –4t + t2, where the units for distance and time are meters and seconds, respectively. What is the object's average speed between t = 0 s and t = 3.0 s ?arrow_forwardhelp pleaseee!!arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University