Concept explainers
One drop of oil falls straight down onto the road from the engine of a moving car every 5 s. Figure OQ2.1 shows the pattern of the drops left behind on the pavement. What is the average speed of the car over this section of its motion? (a) 20 m/s (b) 24 m/s (c) 30 m/s (d) 100 m/s (e) 120 m/s
Figure OQ2.1
The average speed of the car over the given section of motion.
Answer to Problem 1OQ
Option (b).
Explanation of Solution
Write the equation for the average speed.
Here,
Since there are five time intervals during the given section of motion and each time interval is
Substitute
Conclusion:
Since the average speed of the car during the given section of motion is
Since the average speed of the car during the given section of motion is not
Since the average speed of the car during the given section of motion is not
Since the average speed of the car during the given section of motion is not
Since the average speed of the car during the given section of motion is not
Want to see more full solutions like this?
Chapter 2 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- The velocity of an object in one- dimensional motion is v(t) = (3.00 t + 5.00 t2) m/s, where t isgiven in seconds. What is the acceleration of the object at t = 2.00 s? Group of answer choices 0.00 m/s^2 23.0 m/s^2 26.0 m/s^2 19.3 m/s^2 20 m/s^2arrow_forwardWe are standing on the top of a 1040 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = 16t? + 128t + 1040. A) What is the object initial velocity? ft/second B) What is the highest point that the object reaches? feetarrow_forwardA student witnesses a flash of lightning and then t = 1.5 s later the student hears the associated clap of thunder.Sound travels at 343 m/s in the air. What distance from the student is the lightning strike, in meters? Light travels at 3.0 × 108 m/s in the air. How long, t1, in seconds did it take the light to reach the student's eyes after the lightning strike?arrow_forward
- Why is the following situation possible? Emily challenges her friend David to catch a $1 bill as follows. She holds the bill vertically as shown in figure P2.29 with the center of the bill between but not touching David's index finger and thumb. Without warning, Emily releases the bill. David catches the bill without moving his hands downwards. David reaction time is equal to the average human reaction time. Avg human reaction time is .2s. Dollar bill is approx 15.5cm in length. I need help explaining this. Thank you.arrow_forwardCrash acceleration. A car crashes head on into a wall and stops, with the front collapsing by 0.500 m. The driver is firmly held to the seat by a seat belt and thus moves forward by 0.500 m during the crash. Assume that the acceleration is constant during the crash. What is the magnitude of the driver’s acceleration in g units if the initial speed of the car is (a) 35 mi/h and (b) 70 mi/h?arrow_forwardAmel goes for a walk with a speed of 3kph. After 30 minutes of walk, his wife follows him. Walking 3.25 km for the first hour, 3.75 km for the second hour, 4 km for the third hour and so on maintaining a speed of .25 km per hour. How many hours does the wife take to catch up to her husband?arrow_forward
- A frustrated office worker throws his laptop out of his business's high- rise office building. The height, h, in meters of the laptop above the ground at t seconds can be modelled by h(t) = 125-5t². a. Determine the average rate of change between the third and fourth second of the laptop's flight. b. Estimate the rate at which the laptop hits the ground.arrow_forwardStarting from rest, a particle moving in a straight line has an acceleration of a = (2t−6)m/s^2 , where t is in seconds. What is the particle’s velocity when t = 6s, and what is its position when t = 11s? Create a plot for position, velocity, and acceleration versus time, from 0-15s. (Use integration.)arrow_forwardThe velocity of a rat traveling on a straight line is v(s)=1/(s+1), where the velocity is in meters per second and s is in meters. the rat travels 10 meters from s=0 to s=10m. Assume s=0 when t=0. 1. The total time it took for the rat to reach s=10m is ____s. 2. The expression for the position as a function of time is s(t)=_____. 3. The absolute maximum (maximum of absolute values) acceleration of the rat during the 10-meter trip is ____ m/s^2. Please help solve these questions, the solutions are given below I'm just not sure how to solve it. (Use paper sheet ,Not Typewritten) The solutions are: 1) 110 2)(sqrt(t+0.25))-0.5 3)1.00arrow_forward
- A spaceship is traveling at a velocity of v0 = (37.3 m/s)i when its rockets fire, giving it an acceleration of a = (2.55 m/s2)i + (4.19 m/s2)k. How fast, in m/s, is the rocket moving 6.06 s after the rockets fire?arrow_forwardWe are standing on the top of a 720 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = - 16t2 +64t+ 720. = A) What is the object initial velocity? B) What is the highest point that the object reaches? ft/second feetarrow_forwardAlice is riding a bike at 12 mph, but decides to sprint. She takes 0.7 s to accelerate to 19 mph. At constant acceleration, calculate her acceleration, a/(ft/s2). (Here are possibly convenient conversion aids: 60 mph = 1 mi/min = 88 ft/s. This equation is exact. You may wish to verify the equation. One mile = 60*88 ft, and one hour = 60*60 s.)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning