Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 4P

A charged particle moves along a straight line in a uniform electric field E with a speed v. If the motion and the electric field are both in the x direction, (a) show that the magnitude of the acceleration of the charge q is given by

a = d v d t = q E m ( 1 v 2 c 2 ) 3 / 2

(b) Discuss the significance of the dependence of the acceleration on the speed. (c) If the particle starts from rest at x = 0 at t = 0, find the speed of the particle and its position after a time t has elapsed. Comment on the limiting values of v and x as t →∞.

(a)

Expert Solution
Check Mark
To determine

The magnitude of acceleration of the charge.

Answer to Problem 4P

It is proved that the acceleration of the charged particle is a=(qE/m)(1(v2/c2))3/2.

Explanation of Solution

Write the equation for the relativistic momentum.

    p=γmv=mv[1(v2/c2)]1/2        (I)

Here, p is the relativistic momentum of the particle, m is the mass of the particle, v is the velocity of the particle and c is the speed of light.

Write the equation for relativistic force.

    F=dpdt        (II)

Here, F is the relativistic force, p is the relativistic momentum that changes with time t.

Substitute equation (I) in (II).

    F=ddt{mv[1(v2/c2)]1/2}=m[1(v2/c2)]3/2(dvdt)        (III)

Write the equation for the force in terms of electric field.

    F=qE        (IV)

Here, F is the force on the charged particle, q is the charge of the particle and E is the electric field.

Conclusion:

Substitute equation (IV) in (III) and rearrange.

    qE=m[1(v2/c2)]3/2(dvdt)a=dvdt=(qEm)(1v2c2)3/2        (V)

Hence, the given equation for the acceleration of the charged particle is proved.                   

(b)

Expert Solution
Check Mark
To determine

The significance of dependence of acceleration on speed.

Answer to Problem 4P

It signifies that no particle can move with a speed greater than the speed of light.

Explanation of Solution

Equation (V) gives the expression for the acceleration of the charged particle.

Conclusion:

From equation (V), as vc, a0. Hence, it supports the fact that no speed can exceed the speed of light. 

(c)

Expert Solution
Check Mark
To determine

The speed and position of the particle.

Answer to Problem 4P

The speed of the particle is v=qEct/[(mc)2+(qEt)2]1/2 and the position of the particle is x=(c/qE){[(mc)2+(qEt)2]1/2mc}.

Explanation of Solution

Rearrange equation (V) to separate the variables.

    dv(1v2/c2)3/2=(qEm)dt

Conclusion:

Integrate the above equation by giving proper limits.

    0vdv(1v2/c2)3/2=0tqEmdtv(1v2/c2)1/2|0v=qEtmv2(1v2/c2)1/2=(qEtm)2=qEtmv2=(qEtm)2(v2c2)(qEtm)2

Simplify further.

    v2[1+(qEtm)2]=(qEtm)2v2=(qEt/mc)21+(qEt/mc)2v2=(qEct)2(mc)2+(qEt)2

The limiting behavior of v as t0 and t is reasonable.

    v=dxdt=qEct[(mc)2+(qEt)2]1/2x=qEc[(mc)2+(qEt)2]1/2[1(qE)2]|0t=cqE{[(mc)2+(qEt)2]1/2mc}

Here, as t0, x0. Also, as t, xct.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls
What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V?   2. A conductor draws a current of 100 A and a resistance of 5 Ω.  What is thevoltageacross the conductor?   3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA?   4. An x-ray imaging system that draws a current of 90 A is supplied with 220V.  What is the power consumed?   5. An x-ray is produced using 800 mA and 100 kV.  What is the powerconsumed in kilowatts?
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο

Chapter 2 Solutions

Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY