Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 18P
(a)
To determine
The mass difference of the two nuclei.
(b)
To determine
The maximum kinetic energy of the emitted electron.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider the following decay:
232 U →
228 Th + a .
232 U has a mass of 232.0371562 u, 228 Th has a mass of 228.0287411 u, and a has a mass of 4.002603 u.
92
90
92
90
Determine the disintegration energy (Q-value) in MeV.
Q =
Determine the KE of the daughter in MeV.
KED =
Determine the KE of the a particle in MeV & as a factor of Q.
KE, =
KEa
= Qx
Determine the speed of the a particle in terms of c. For an a particle, E. = 3.727 GeV. [NOTE: G stands for giga- which means 109 & M stands for mega- which means 10°.]
Valpha =
XC
Consider the following a-decay of the Uranium nucleus
236 U → 332Th + a.
90
(a) Show how the mass number (Aa) and atomic number (Za) of the alpha particle are obtained from
this equation.
(b) Calculate the Q-value (Qa) of the reaction.
(c) Calculate the speed va = √2MQ of the alpha particle after it has been ejected from the parent
nucleus, in terms of the speed of light c. M =
-, mp and ma are the atomic masses
(ma+mp) x ma
mp
of the daugher nucleus and the alpha particle, respectively.
(d) Calculate the classical turning radius Re= 2Zpe²/Qa, where Zp is the atomic number of the
daughter nucleus, and e² = 1.44 MeV. fm.
(e) Calculate the decay probability Pa that the alpha particle will tunnel through the barrier.
HINT: In calculating the probability, use the fact that ħc=197.327 MeV fm. The formula to use
is given on page 5.
The energy released by each fission within the core of a nuclear reactor is 2.00 × 102 MeV. The number of fissions occurring each second is 4.10 × 1019. Determine the power (in watts) that the reactor generates.
Chapter 2 Solutions
Modern Physics
Ch. 2 - A particle is moving at a speed of less than c/2....Ch. 2 - Give a physical argument showing that it is...Ch. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5QCh. 2 - Prob. 6QCh. 2 - Prob. 8QCh. 2 - Prob. 9QCh. 2 - Calculate the momentum of a proton moving with a...Ch. 2 - Prob. 2P
Ch. 2 - Consider the relativistic form of Newtons second...Ch. 2 - A charged particle moves along a straight line in...Ch. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - A proton moves at a speed of 0.95c. Calculate its...Ch. 2 - An electron has a kinetic energy 5 times greater...Ch. 2 - Find the speed of a particle whose total energy is...Ch. 2 - A proton in a high-energy accelerator is given a...Ch. 2 - An electron has a speed of 0.75c. Find the speed...Ch. 2 - Protons in an accelerator at the Fermi National...Ch. 2 - How long will the Sun shine, Nellie? The Sun...Ch. 2 - Electrons in projection television sets are...Ch. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - An electron having kinetic energy K = 1.000 MeV...Ch. 2 - The K0 meson is an uncharged member of the...Ch. 2 - An unstable particle having a mass of 3.34 1027...Ch. 2 - As measured by observers in a reference frame S, a...Ch. 2 - An object having mass of 900 kg and traveling at a...Ch. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - A particle of mass m moving along the x-axis with...Ch. 2 - Prob. 32PCh. 2 - Energy reaches the upper atmosphere of the Earth...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of 235U is fissioned in one year of fullpower operation?arrow_forwardIf the rest energies of a proton and a neutron (the two constituents of nuclei) are 938.3 and 939.6 MeV, what is the difference in their mass in kilograms?arrow_forward(a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forward
- (a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardUnreasonable Results A particle physicist discovers a neutral particle with a mass at 2.02733 u that he assumes is two neutrons bound together. (a) Find the binding energy. (b) What is unreasonable about this result? (c) What assumptions are unreasonable or inconsistent?arrow_forwardThe electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical power. What is the thermal nuclear power output in megawatts? How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? What mass of 235U is fissioned in 1 year of full-power operation?arrow_forward
- (a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward(a) How much energy would be released if the proton did decay 1uria the conjectured reaction (b) Given that the decays to two (s and that the will find an electron to annihilate, what total energy is ultimately produced in proton decay? (c) Why is this energy greater than the proton's total mass (converted to energy)?arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward
- A nuclear physicist finds 1.0of 236Uin a piece of uranium ore (T1/2=2.348107y) . (a) Use die decay law to determine how much 236Uwould had to have been on Earth when it formed 4.543109yago for 1.0gto be left today, (b) What is unreasonable about this result? (c) How is this unreasonable result resolved?arrow_forwardThe primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forwardA particle physicist discovers a neutral particle with a mass of 2.02733 u that he assumes is two neutrons bound together. Find the binding energy. What is unreasonable about this result?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning