Introductory Combinatorics
5th Edition
ISBN: 9780134689616
Author: Brualdi, Richard A.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 32E
To determine
The number of 11-permutations of the multiset
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Let 2 (a, b, c} be the sample space.
(b) Construct a a-field containing A = {a, b} and B = {b, c}.
2=
1. Let 2 {a, b, c} be the sample space.
(a) Write down the power set of 2.
Theorem: show that XCH) = M(E) M" (6) E +
t
Mcfic
S
a
Solution of ODE
-9CA)-
x = ACE) x + g (t) + X (E) - E
Chapter 2 Solutions
Introductory Combinatorics
Ch. 2 - Prob. 1ECh. 2 - How many orderings are there for a deck of 52...Ch. 2 - In how many ways can a poker hand (five cards) be...Ch. 2 - How many distinct positive divisors does each of...Ch. 2 - Determine the largest power of 10 that is a factor...Ch. 2 - How many integers greater than 5400 have both of...Ch. 2 - In how many ways can four men and eight women be...Ch. 2 - In how many ways can six men and six women be...Ch. 2 - In how many ways can 15 people be seated at a...Ch. 2 - A committee of five people is to be chosen from a...
Ch. 2 - How many sets of three integers between 1 and 20...Ch. 2 - A football team of 11 players is to be selected...Ch. 2 - There are 100 students at a school and three...Ch. 2 - A classroom has two rows of eight seats each....Ch. 2 - At a party there are 15 men and 20 women.
How many...Ch. 2 - Prove that
by using a combinatorial argument and...Ch. 2 - In how many ways can six indistinguishable rooks...Ch. 2 - In how many ways can two red and four blue rooks...Ch. 2 - We are given eight rooks, five of which are red...Ch. 2 - Determine the number of circular permutations of...Ch. 2 - How many permutations are there of the letters of...Ch. 2 - A footrace takes place among four runners. If ties...Ch. 2 - Bridge is played with four players and an ordinary...Ch. 2 - Prob. 24ECh. 2 - A ferris wheel has five cars, each containing four...Ch. 2 - A group of mn people are to be arranged into m...Ch. 2 - In how many ways can five indistinguishable rooks...Ch. 2 - A secretary works in a building located nine...Ch. 2 - Prob. 29ECh. 2 - We are to seat five boys, five girls, and one...Ch. 2 - Prob. 31ECh. 2 - Determine the number of 11-permutations of the...Ch. 2 - Determine the number of 10-permutations of the...Ch. 2 - Determine the number of 11-permutations of the...Ch. 2 - List all 3-combintions and 4-combinations of the...Ch. 2 - Prob. 36ECh. 2 - A bakery sells six different kinds of pastry. If...Ch. 2 - How many integral solutions of
x1 + x2 + x3 + x4 =...Ch. 2 - There are 20 identical sticks lined up in a row...Ch. 2 - There are n sticks lined up in a row, and k of...Ch. 2 - In how many ways can 12 indistinguishable apples...Ch. 2 - Prob. 42ECh. 2 - Prob. 43ECh. 2 - Prove that the number of ways to distribute n...Ch. 2 - Prob. 45ECh. 2 - Prob. 46ECh. 2 - There are 2n + 1 identical books to be put in a...Ch. 2 - Prob. 48ECh. 2 - Prob. 49ECh. 2 - In how many ways can five identical rooks be...Ch. 2 - Consider the multiset {n · a, 1, 2, 3, … , n} of...Ch. 2 - Consider the multiset {n · a, n · b, 1, 2, 3, … ,...Ch. 2 - Find a one-to-one correspondence between the...Ch. 2 - Prob. 54ECh. 2 - How many permutations are there of the letters in...Ch. 2 - What is the probability that a poker hand contains...Ch. 2 - What is the probability that a poker hand contains...Ch. 2 - Prob. 58ECh. 2 - Prob. 59ECh. 2 - A bagel store sells six different kinds of bagels....Ch. 2 - Consider an 9-by-9 board and nine rooks of which...Ch. 2 - Prob. 62ECh. 2 - Four (standard) dice (cubes with 1, 2, 3, 4, 5, 6,...Ch. 2 - Let n be a positive integer. Suppose we choose a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Exercise 1 Given are the following planes: plane 1: 3x4y+z = 1 0 plane 2: (s, t) = ( 2 ) + ( -2 5 s+ 0 ( 3 t 2 -2 a) Find for both planes the Hessian normal form and for plane 1 in addition the parameter form. b) Use the cross product of the two normal vectors to show that the planes intersect in a line. c) Calculate the intersection line. d) Calculate the intersection angle of the planes. Make a sketch to indicate which angle you are calculating.arrow_forward1. Let 2 (a, b, c)} be the sample space. (a) Write down the power set of 2. (b) Construct a σ-field containing A = {a, b} and B = {b, c}. (c) Show that F= {0, 2, {a, b}, {b, c}, {b}} is not a σ-field. Add some elements to make it a σ-field..arrow_forward13. Let (, F, P) be a probability space and X a function from 2 to R. Explain when X is a random variable.arrow_forward
- 24. A factory produces items from two machines: Machine A and Machine B. Machine A produces 60% of the total items, while Machine B produces 40%. The probability that an item produced by Machine A is defective is P(DIA)=0.03. The probability that an item produced by Machine B is defective is P(D|B)=0.05. (a) What is the probability that a randomly selected product be defective, P(D)? (b) If a randomly selected item from the production line is defective, calculate the probability that it was produced by Machine A, P(A|D).arrow_forward(b) In various places in this module, data on the silver content of coins minted in the reign of the twelfth-century Byzantine king Manuel I Comnenus have been considered. The full dataset is in the Minitab file coins.mwx. The dataset includes, among others, the values of the silver content of nine coins from the first coinage (variable Coin1) and seven from the fourth coinage (variable Coin4) which was produced a number of years later. (For the purposes of this question, you can ignore the variables Coin2 and Coin3.) In particular, in Activity 8 and Exercise 2 of Computer Book B, it was argued that the silver contents in both the first and the fourth coinages can be assumed to be normally distributed. The question of interest is whether there were differences in the silver content of coins minted early and late in Manuel’s reign. You are about to investigate this question using a two-sample t-interval. (i) Using Minitab, find either the sample standard deviations of the two variables…arrow_forward5. (a) State the Residue Theorem. Your answer should include all the conditions required for the theorem to hold. (4 marks) (b) Let y be the square contour with vertices at -3, -3i, 3 and 3i, described in the anti-clockwise direction. Evaluate に dz. You must check all of the conditions of any results that you use. (5 marks) (c) Evaluate L You must check all of the conditions of any results that you use. ཙ x sin(Tx) x²+2x+5 da. (11 marks)arrow_forward
- 3. (a) Lety: [a, b] C be a contour. Let L(y) denote the length of y. Give a formula for L(y). (1 mark) (b) Let UCC be open. Let f: U→C be continuous. Let y: [a,b] → U be a contour. Suppose there exists a finite real number M such that |f(z)| < M for all z in the image of y. Prove that < ||, f(z)dz| ≤ ML(y). (3 marks) (c) State and prove Liouville's theorem. You may use Cauchy's integral formula without proof. (d) Let R0. Let w € C. Let (10 marks) U = { z Є C : | z − w| < R} . Let f UC be a holomorphic function such that 0 < |ƒ(w)| < |f(z)| for all z Є U. Show, using the local maximum modulus principle, that f is constant. (6 marks)arrow_forward3. (a) Let A be an algebra. Define the notion of an A-module M. When is a module M a simple module? (b) State and prove Schur's Lemma for simple modules. (c) Let AM(K) and M = K" the natural A-module. (i) Show that M is a simple K-module. (ii) Prove that if ƒ € Endд(M) then ƒ can be written as f(m) = am, where a is a matrix in the centre of M, (K). [Recall that the centre, Z(M,(K)) == {a Mn(K) | ab M,,(K)}.] = ba for all bЄ (iii) Explain briefly why this means End₁(M) K, assuming that Z(M,,(K))~ K as K-algebras. Is this consistent with Schur's lemma?arrow_forward(a) State, without proof, Cauchy's theorem, Cauchy's integral formula and Cauchy's integral formula for derivatives. Your answer should include all the conditions required for the results to hold. (8 marks) (b) Let U{z EC: |z| -1}. Let 12 be the triangular contour with vertices at 0, 2-2 and 2+2i, parametrized in the anticlockwise direction. Calculate dz. You must check the conditions of any results you use. (d) Let U C. Calculate Liz-1ym dz, (z - 1) 10 (5 marks) where 2 is the same as the previous part. You must check the conditions of any results you use. (4 marks)arrow_forward
- (a) Suppose a function f: C→C has an isolated singularity at wЄ C. State what it means for this singularity to be a pole of order k. (2 marks) (b) Let f have a pole of order k at wЄ C. Prove that the residue of f at w is given by 1 res (f, w): = Z dk (k-1)! >wdzk−1 lim - [(z — w)* f(z)] . (5 marks) (c) Using the previous part, find the singularity of the function 9(z) = COS(πZ) e² (z - 1)²' classify it and calculate its residue. (5 marks) (d) Let g(x)=sin(211). Find the residue of g at z = 1. (3 marks) (e) Classify the singularity of cot(z) h(z) = Z at the origin. (5 marks)arrow_forward1. Let z = x+iy with x, y Є R. Let f(z) = u(x, y) + iv(x, y) where u(x, y), v(x, y): R² → R. (a) Suppose that f is complex differentiable. State the Cauchy-Riemann equations satisfied by the functions u(x, y) and v(x,y). (b) State what it means for the function (2 mark) u(x, y): R² → R to be a harmonic function. (3 marks) (c) Show that the function u(x, y) = 3x²y - y³ +2 is harmonic. (d) Find a harmonic conjugate of u(x, y). (6 marks) (9 marks)arrow_forwardPlease could you provide a step by step solutions to this question and explain every step.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Find number of persons in a part with 66 handshakes Combinations; Author: Anil Kumar;https://www.youtube.com/watch?v=33TgLi-wp3E;License: Standard YouTube License, CC-BY
Discrete Math 6.3.1 Permutations and Combinations; Author: Kimberly Brehm;https://www.youtube.com/watch?v=J1m9sB5XZQc;License: Standard YouTube License, CC-BY
How to use permutations and combinations; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=NEGxh_D7yKU;License: Standard YouTube License, CC-BY
Permutations and Combinations | Counting | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=0NAASclUm4k;License: Standard Youtube License
Permutations and Combinations Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=XJnIdRXUi7A;License: Standard YouTube License, CC-BY