
Concept explainers
Explanation of Solution
Planned obsolescence:
The technique, which is used to get attraction and create sensation among users to purchase a newer version or model of the accessory or a commodity, is known as planned obsolescence.
This technique is basically to create deliberate sensation of need among users to get a newer version even though the newer version is not much advanced and do not come with great advancements.
The plot to sell the products is a clever strategy to generate profitable revenue, but also to create an increase in the size of consumer groups.
The identification of technology that holds significant value for the customer is carried out. After the complete analysis of the technology discovered, the technology is implemented in the production line...

Trending nowThis is a popular solution!

Chapter 2 Solutions
Computer Science: An Overview (12th Edition)
- describe 3 practices you would not recommend when designing data visualizations. Explain your responsearrow_forwardPlease answers two questions of JAVA OOP.arrow_forward4. Suppose we have a perfect binary tree with height h 0 representing a heap, meaning it = has n 2+1 1 keys indexed from 1 to 2+1 1. When we run convertomaxheap we run maxheapify in reverse order on every key with children. Let's examine the worst-case - In the worst-case every single key gets swapped all the way to the leaf level. (a) For each level in the tree there are a certain number of nodes and each of those nodes [10 pts] requires a certain number of swaps. Fill in the appropriate values/expressions in the table: Level Number of Keys Number of Swaps per Key 0 2 .. (b) Write down a sum for the total number of swaps required. This should involve h, not n. [10 pts] Totalarrow_forward
- The next problem concerns the following C code: /copy input string x to buf */ void foo (char *x) { char buf [8]; strcpy((char *) buf, x); } void callfoo() { } foo("ZYXWVUTSRQPONMLKJIHGFEDCBA"); Here is the corresponding machine code on a Linux/x86 machine: 0000000000400530 : 400530: 48 83 ec 18 sub $0x18,%rsp 400534: 48 89 fe mov %rdi, %rsi 400537: 48 89 e7 mov %rsp,%rdi 40053a: e8 di fe ff ff callq 400410 40053f: 48 83 c4 18 add $0x18,%rsp 400543: c3 retq 400544: 0000000000400544 : 48 83 ec 08 sub $0x8,%rsp 400548: bf 00 06 40 00 mov $0x400600,%edi 40054d: e8 de ff ff ff callq 400530 400552: 48 83 c4 08 add $0x8,%rsp 400556: c3 This problem tests your understanding of the program stack. Here are some notes to help you work the problem: ⚫ strcpy(char *dst, char *src) copies the string at address src (including the terminating '\0' character) to address dst. It does not check the size of the destination buffer. • You will need to know the hex values of the following characters:arrow_forward1234 3. Which line prevents compiler optimization? Circle one: 1234 Suggested solution: Store strlen(str) in a variable before the if statement. ⚫ Remove the if statement. Replace index 0 && index < strlen(str)) { 5 } } = str [index] = val;arrow_forwardCharacter Hex value | Character Hex value Character Hex value 'A' 0x41 'J' Ox4a 'S' 0x53 'B' 0x42 'K' 0x4b "T" 0x54 0x43 'L' Ox4c 'U' 0x55 0x44 'M' 0x4d 'V' 0x56 0x45 'N' Ox4e 'W' 0x57 0x46 '0' Ox4f 'X' 0x58 0x47 'P' 0x50 'Y' 0x59 0x48 'Q' 0x51 'Z' Ox5a 'T' 0x49 'R' 0x52 '\0' 0x00 Now consider what happens on a Linux/x86 machine when callfoo calls foo with the input string "ZYXWVUTSRQPONMLKJIHGFEDCBA". A. On the left draw the state of the stack just before the execution of the instruction at address Ox40053a; make sure to show the frames for callfoo and foo and the exact return address, in Hex at the bottom of the callfoo frame. Then, on the right, draw the state of the stack just after the instruction got executed; make sure to show where the string "ZYXWVUTSRQPONMLKJIHGFEDCBA" is placed and what part, if any, of the above return address has been overwritten. B. Immediately after the ret instruction at address 0x400543 executes, what is the value of the program counter register %rip?…arrow_forward
- A+ Guide To It Technical SupportComputer ScienceISBN:9780357108291Author:ANDREWS, Jean.Publisher:Cengage,Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningFundamentals of Information SystemsComputer ScienceISBN:9781337097536Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning
- Fundamentals of Information SystemsComputer ScienceISBN:9781305082168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning





