Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.9CQ
Two cars are moving in the same direction in parallel lanes along a highway. At some instant, the velocity of car A exceeds the velocity of car B. Does that mean that the acceleration of car A is greater than that of car B? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a relay race, runner A is carrying the baton and has a speed of 5.6 m/s. When runner A is 96 m
9)
behind runner B, runner A starts slowing down with 0.02 m/s². At the same moment, runner B starts from rest and
accelerates rightward with 0.06 m/s².
a) How long afterwards will A catch up with B to pass the baton to B?
b) What are the speed of runners at the meeting point?
c) What is the distance travelled by runner B at the meeting time?
= 5.6 m/s
ад 3D 0.02 т/s2
aB =
0.06 m/s?
文
d — 96 т
A train makes a journey in which at a point on its trajectory a speed of 80.0 km / h is measured towards
the east, while half an hour later the speed is 65.0 km /h towards the east. Can you calculate the
average acceleration in this half hour of travel?
a) No, because we do not know the starting position or the final position of that half hour of travel.
b) No, because we do not know how the direction of the train changed in the other moments of
that half hour of travel.
c) Yes, and it has a magnitude of 30.0 km/h?? westward.
d) Yes, and it has a magnitude of 30.0 km / h²2? to the east.
A distance of 60 meters separates two jetskis at Virginia Beach. Starting at rest, the jetskis accelerate at a constant rate of 0.2 m/s2 towards each other.Starting at a midpoint between the two jetskis, a porpoise is seen swimming from one jetski to the other at a constant speed of 16 m/s. The porpoise continues swimming back and forth between the jetskis until they crash together.a) What is the total distance the porpoise travelled?
b) what is the speed of the jetskis when they crash together?
Chapter 2 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 2 - Are officers in the highway patrol more interested...Ch. 2 - Make a velocitytime graph for the car in Figure...Ch. 2 - If a car is traveling eastward and slowing down,...Ch. 2 - Which one of the following statements is true? (a)...Ch. 2 - In Figure 2.12, match each vxt graph on the top...Ch. 2 - Consider the following choices: (a) increases, (b)...Ch. 2 - One drop of oil falls straight down onto the road...Ch. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - A juggler throws a bowling pin straight up in the...Ch. 2 - When applying the equations of kinematics for an...
Ch. 2 - A cannon shell is fired straight up from the...Ch. 2 - An arrow is shot straight up in the air at an...Ch. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - A rock is thrown downward from the top of a...Ch. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Oil another planet, a marble is released from rest...Ch. 2 - As an object moves along the .v axis, many...Ch. 2 - A pebble is dropped from rest from the lop of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Von drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A hard rubber ball, not affected by air resistance...Ch. 2 - Each of the strobe photographs (a), (b). and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Try the following experiment away from traffic:...Ch. 2 - Prob. 2.3CQCh. 2 - Prob. 2.4CQCh. 2 - Prob. 2.5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can (he equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Section 2.1 Position, Velocity, and Speed The...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A prison walks first al a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Review. The North American and European plates of...Ch. 2 - A hare and a tortoise compete in a race over a...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Review. A 50.0-g Super Ball traveling al 25.0 m/s...Ch. 2 - A velocity-time graph for an object moving along...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - A panicle mows along the x axis according to the...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - The minimum distance required to stop a car moving...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A speedboat moving at 30.0 m/s approaches a...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 2.31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A truck on a straight road starts from rest,...Ch. 2 - Why is the following situation impossible?...Ch. 2 - The driver of a car slants on the brakes when he...Ch. 2 - Prob. 2.36PCh. 2 - A speedboat travels in a straight line and...Ch. 2 - A particle moves along the x axis. Its position is...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - An object moves with constant acceleration 4.00...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Figure P2.43 represents part of the performance...Ch. 2 - A hockey player is standing on his skates on a...Ch. 2 - In Chapter 9, we will define the center of mass of...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Why is the following situation impossible? Emily...Ch. 2 - A baseball is hit so that it travels straight...Ch. 2 - It is possible to shoot an arrow at a speed as...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 2.51PCh. 2 - A ball is thrown upward from the ground with an...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - A daring ranch hand sitting on a tree limb wishes...Ch. 2 - A package is dropped at time t = 0 from a...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - A certain automobile manufacturer claims that its...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - An object is at x = 0 at t = 0 and moves along the...Ch. 2 - Ail inquisitive physics student and mountain...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - A ball starts from rest and accelerates at 0.5(H)...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - The Acela is an electric train on the...Ch. 2 - Two objects move with initial velocity 8.00 m/s,...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - A catapult launches a test rocket vertically...Ch. 2 - Kathy tests her new sports car by racing with...Ch. 2 - Two students are on a balcony a distance h above...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Astronauts on a distant planet toss a rock into...Ch. 2 - A motorist drives along a straight road at a...Ch. 2 - A commuter train travels between two downtown...Ch. 2 - Lisa rushes down onto a subway platform to find...Ch. 2 - A hard rubber ball, released at chest height,...Ch. 2 - A blue car of length 4.52 m is moving north on a...Ch. 2 - Review. As soon as a traffic light turns green, a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - A man drops a rock into a well, (a) The man hears...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5.106 A 70-kg person rides in a 30-kg cart moving at 12 m/s at the top of a hill that is in the shape of an arc...
University Physics (14th Edition)
8. The formula ΔU = nCvΔT for the change in the internal energy of a fixed amount of an ideal gas is valid
only...
College Physics (10th Edition)
What discovery in the 15th century greatly advanced progress in science?
Conceptual Physical Science Explorations
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
The Cosmic Perspective Fundamentals (2nd Edition)
The formula for the sum Sn of the geometric series Sn=a+ar+.....arn−1 .
Mathematical Methods in the Physical Sciences
Can the observer shown see a star when it is located below the horizon? Why or why not?
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A racing car starts from rest at t = 0 and reaches a final speed at time t. II the acceleration of the car is constant during this time, which of the following statements are true? (a) The car travels a distance t. (b) The average speed of the car is /2. (c) The magnitude of the acceleration of the car is /t. (d) The velocity of the car remains constant, (e) None of statements (a) through (d) is true.arrow_forwardA truck tractor pulls two trailers, one behind the other, at a constant speed of 1.00 102 km/h. It takes 0.600 s for the big rig to completely pass onto a bridge 4.00 102 m long. For what duration of time is all or part of the truck-trailer combination on the bridge?arrow_forwardA glider on an air track carries a flag of length through a stationary photogate, which measures the time interval td during which the flag blocks a beam of infrared light passing across the photogate. The ratio vd = /td is the average velocity of the glider over this part of its motion. Suppose the glider moves with constant acceleration, (a) Is vd necessarily equal to the instantaneous velocity of the glider when it is halfway through the photogate in space? Explain. (b) Is vd equal to the instantaneous velocity of the glider when it is halfway through the photogate in time? Explain.arrow_forward
- You throw a baseball straight up in the air so that it rises to a maximum height much greater than your height. Is the magnitude of the ball’s acceleration greater while it is being thrown or after it leaves your hand? Explain.arrow_forward0179% I 10:29 docs.google.com/forms 92 the location of Q. Objects A and B both start from rest. They both accelerate at the same rate. However, object A accelerates for twice the time as object B. What is the distance traveled by object A comparedto that of object B? * four times as far twice as far the same distance three times as far An object starts from rest and undergoes uniform acceleration. During the first second it travels 2 m. How far will it travel during the third second?arrow_forward1. A bicyclist is finishing his repair of a flat tire when a friend rides by with a constant speed of 4.0 m/s. Three seconds later the bicyclist hops on his bike and begins to follow the friend with an initial speed of 10 m/s. Assume the bicyclist continues at a constant speed of 10 m/s until he catches the friend. a) Calculate the time it takes to catch his friend. b) How fast is he moving when he catches his friend? c) How far did he travel to catch his friend?arrow_forward
- 53) While entering a freeway, a car accelerates from rest at a rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the situation. (b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the unknown, then indicate how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car’s final velocity? Solve for this unknown in the same manner as in (c), showing all steps explicitly.arrow_forwardSuppose that a NASCAR race car is moving to the right with a constant velocity of +92 m/s. a) What is the average acceleration of the car? b) Twelve seconds later, the car is halfway around the track and traveling in the opposite direction with the same speed. What is the average acceleration of the car?arrow_forward1. The car stops at the traffic light. It then moves along a straight path so that its distance from the light is given by x(t) = bt² – ct³, where b = 2.40 and c = 0.120. a) Calculate the average velocity of the car for the time interval t = 0 to t = 10.0 s. b) Determine the car's instantaneous velocity at t = 0, t = 5s and t = 10s. c) How long after starting from rest is the car again at rest.arrow_forward
- Two hockey players are skating towards each other. They are 50.0 m apart. The first is accelerating from rest at 0.74 m/s2 and the second has already attained his maximum speed of 6.2 m/s. Find a) How long before they hit each other. b) How fast was the accelerating player going at the time of contact. c) How far has each player skated.arrow_forwardTwo cars are moving in the same direction in parallel lanes along ahighway. At some instant, car A is traveling faster than car B. Does that mean the acceleration of A is greater than that of B at that instant? (a) Yes. At any instant, a faster object always has a larger acceleration. (b) No. Acceleration only tells how an object's velocity is changing at some instant.arrow_forwardA police car waits in hiding slightly off the highway. A speeding car is spotted by the police car traveling at speed s = 32 m/s. At the instant the speeding car passes the police car, the police car accelerates forward from rest at a constant rate of a = 3.94 m/s2 to catch the speeding car. Assume the speeding car maintains its speed. a) Write an expression for the time it takes for the police car to catch the speeding car. Use the variables from the problem statement for your expression. b) How long, in seconds, does it take for the police car to catch the speeding car?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY