
Concept explainers
(a)
Interpretation:
The percentage of mass contributed by neutrons in Carbon-12 is to be calculated.
Concept Introduction:

Answer to Problem 2.80P
Neutrons contribute 50% of mass in carbon-12.
Explanation of Solution
The
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Carbon-12 nucleus is 6.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of carbon-12 is calculated as.
Putting the values in the above equation.
(b)
Interpretation:
Percentage of mass contributed by neutrons in Calcium-40 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 2.80P
Neutrons contribute 50% of mass in calcium-40.
Explanation of Solution
The atomic number of Calcium is 20, and the atomic mass is 40.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Calcium-40 nucleus is 20.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Calcium-40 is calculated as.
Putting the values in the above equation.
(c)
Interpretation:
Percentage of mass contributed by neutrons in Iron-55 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 2.80P
Neutrons contribute 52.72% of mass in Iron-55.
Explanation of Solution
The atomic number of Iron is 26, and the atomic mass is 55.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Iron-55 nucleus is 26.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Iron-55is calculated as.
Putting the values in the above equation.
(d)
Interpretation:
Percentage of mass contributed by neutrons in Bromine-79 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 2.80P
Neutrons contribute 55.69% of mass in Bromine-79.
Explanation of Solution
The atomic number of Bromine-79 is 35, and the atomic mass is 79.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Bromine-79 nucleus is 35.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Bromine-79 is calculated as.
Putting the values in the above equation.
(e)
Interpretation:
Percentage of mass contributed by neutrons in Platinum-195 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 2.80P
Neutrons contribute 60% of mass in Platinum-195.
Explanation of Solution
The atomic number of Platinum-195 is 78, and the atomic mass is 195.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Platinum-195 nucleus is 78.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Platinum is calculated as.
Putting the values in the above equation.
(f)
Interpretation:
Percentage of mass contributed by neutrons in Uranium-238 is to be calculated.
Concept Introduction:
Atomic mass is the sum of the number of the proton and number of the neutron present in the nucleus of an atom.

Answer to Problem 2.80P
Neutrons contribute 61.34% of mass in Uranium-238.
Explanation of Solution
The atomic number of Uranium-238 is 92, and the atomic mass is 238.
The atomic number (Z) = equal to the number of protons.
Therefore, number of protons in the Uranium-238 nucleus is 92.
The atomic mass is given as.
Therefore, contribution of neutrons in the mass of Uranium-238 is calculated as.
Putting the values in the above equation.
Want to see more full solutions like this?
Chapter 2 Solutions
Student Solutions Manual for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





