Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
4th Edition
ISBN: 9781119285915
Author: Seborg
Publisher: WILEY
Question
Book Icon
Chapter 2, Problem 2.7E
Interpretation Introduction

(a)

Interpretation:

The degree of freedom analysis for the given process is to be calculated and all the manipulated input, output, and disturbance variables are to be identified.

Concept introduction:

For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

Degree of freedom analysis of a process model ensures that its model equations are solvable. The expression to calculate the degree of freedom is:

NF=NVNE   .........(1)

Here, NF is the number of degree of freedom for the process model, NV is the total number of process variables, and NE is the total number of independent equations written for the process model.

Interpretation Introduction

(b)

Interpretation:

The degree of freedom analysis for the given process is to be calculated and all the manipulated input, output, and disturbance variables are to be identified.

Concept introduction:

For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

Degree of freedom analysis of a process model ensures that its model equations are solvable. The expression to calculate the degree of freedom is:

NF=NVNE   .........(1)

Here, NF is the number of degree of freedom for the process model, NV is the total number of process variables, and NE is the total number of independent equations written for the process model.

Blurred answer
Students have asked these similar questions
please solve 7.2
In fact, problem 5.1 has been solved.In question 5.1, I found that TIME CONSTANT is AR.And I also found that q=(h-2)/R. I don't know how to solve it after this
9.5 Comparison of Three Scale-up Methods for a Crystallization A batch crystal- lization of an antibiotic was performed using a volume of 750 ml in the laboratory with a 3.5 cm diameter impeller at a speed of 600 rpm, the minimum speed required to fully suspend the crystals. Estimate the size of the impeller and the impeller speed for scale-up to 250 liters for each of the following three assumptions as a basis for scale-up: (1) constant power per volume, (2) constant impeller tip speed, and (3) full suspension of crystals (at minimum speed).
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The