
To find:
Moles and atoms of iron in the given compounds.

Answer to Problem 2.76QA
Solution:
a) 2.5 moles of wolframite - FeWO4 contain 2.5 moles and 1.5 x 1024 atoms of Iron.
b) 2.5 moles of pyrite- FeS2 contain 2.5 moles and 1.5 x 1024 atoms of Iron
c) 2.5 moles of magnetite - Fe3O4 contain 7.5 moles and 4.5 x 1024 atoms of Iron.
d) 2.5 moles of hematite - Fe2O3 contain 5.0 moles and 3.0 x 1024 atoms of Iron.
Explanation of Solution
Calculations:
a) 2.5 moles of FeWO4
In one molecule of FeWO4, there is one atom of Fe. Therefore, we can say that the mole ratio between FeWO4 and Fe is 1:1. Now, we have the mole to mole ratio and moles of FeWO4. So, we can calculate the moles of Fe by using the dimensional analysis as below.
So, 2.5 moles of FeWO4 contain 2.5 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of given substance, which is equal to
Using this conversion factor, we will convert 2.5 mol of Fe to atoms of Fe.
So, 2.5 moles of FeWO4 contain 1.5 x 1024 atoms of Fe.
b) 2.5 moles of FeS2
In one molecule of FeS2, there is one atom of Fe. Therefore, we can say that the mole ratio between FeS2 and Fe is 1:1. Now, we have the mole to mole ratio and moles of FeS2. So, we can calculate the moles of Fe by using dimensional analysis as below.
So, 2.5 moles of FeS2 contains 2.5 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of the given substance, which is equal to Avogadro’s number.
Using this conversion factor, we will convert 2.5 mol of Fe to atoms of Fe.
So, 2.5 moles of FeS2 contain 1.5 x 1024 atoms of Fe.
c) 2.5 moles of Fe3O4
In one molecule of Fe3O4, there are three atoms of Fe. Therefore, we can say that the mole ratio between Fe3O4 and Fe is 1:3. Now, we have the mole to mole ratio and moles of Fe3O4. So, we can calculate the moles of Fe by using the dimensional analysis as below.
So, 2.5 moles of Fe3O4 contains 7.5 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of given substance, which is equal to Avogadro’s number.
Using this conversion factor, we will convert 7.5 mol of Fe to atoms of Fe.
So, 2.5 moles of Fe3O4 contain 4.5 x 1024 atoms of Fe.
d) 2.5 moles of Fe2O3
In one molecule of Fe2O3, there are two atoms of Fe. Therefore, we can say that the mole ratio between Fe2O3 and Fe is 1:2. Now, we have the mole to mole ratio and moles of Fe2O3. So, we can calculate the moles of Fe by using dimensional analysis as below.
So, 2.5 moles of Fe2O3 contains 5.0 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of given substance, which is equal to Avogadro’s number.
Using this conversion factor, we will convert 5.0 mol of Fe to atoms of Fe.
So, 2.5 moles of Fe2O3 contains 3.0 x 1024 atoms of Fe.
Conclusion:
a) 2.5 moles of wolframite - FeWO4 contain 2.5 moles and 1.5 x 1024 atoms of Iron.
b) 2.5 moles of pyrite- FeS2 contain 2.5 moles and 1.5 x 1024 atoms of Iron
c) 2.5 moles of magnetite - Fe3O4 contain 7.5 moles and 4.5 x 1024 atoms of Iron.
d) 2.5 moles of hematite - Fe2O3 contain 5.0 moles and 3.0 x 1024 atoms of Iron.
Want to see more full solutions like this?
Chapter 2 Solutions
CHEM:ATOM FOC 2E CL (TEXT)
- Problem 6-29 Identify the functional groups in the following molecules, and show the polarity of each: (a) CH3CH2C=N CH, CH, COCH (c) CH3CCH2COCH3 NH2 (e) OCH3 (b) (d) O Problem 6-30 Identify the following reactions as additions, eliminations, substitutions, or rearrangements: (a) CH3CH2Br + NaCN CH3CH2CN ( + NaBr) Acid -OH (+ H2O) catalyst (b) + (c) Heat NO2 Light + 02N-NO2 (+ HNO2) (d)arrow_forwardPredict the organic product of Y that is formed in the reaction below, and draw the skeletal ("line") structures of the missing organic product. Please include all steps & drawings & explanations.arrow_forwardPlease choose the best reagents to complete the following reactionarrow_forward
- Problem 6-17 Look at the following energy diagram: Energy Reaction progress (a) Is AG for the reaction positive or negative? Label it on the diagram. (b) How many steps are involved in the reaction? (c) How many transition states are there? Label them on the diagram. Problem 6-19 What is the difference between a transition state and an intermediate? Problem 6-21 Draw an energy diagram for a two-step reaction with Keq > 1. Label the overall AG°, transition states, and intermediate. Is AG° positive or negative? Problem 6-23 Draw an energy diagram for a reaction with Keq = 1. What is the value of AG° in this reaction?arrow_forwardProblem 6-37 Draw the different monochlorinated constitutional isomers you would obtain by the radical chlorination of the following compounds. (b) (c) Problem 6-39 Show the structure of the carbocation that would result when each of the following alkenes reacts with an acid, H+. (a) (b) (c)arrow_forwardPlease draw the major product of this reaction. Ignore inorganic byproducts and the carboxylic side productarrow_forward
- predict the product formed by the reaction of one mole each of cyclohex-2-en-1-one and lithium diethylcuprate. Assume a hydrolysis step follows the additionarrow_forwardPlease handwriting for questions 1 and 3arrow_forwardIs (CH3)3NHBr an acidic or basic salt? What happens when dissolved in aqueous solution? Doesn't it lose a Br-? Does it interact with the water? Please advise.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





