![CHEM:ATOM FOC 2E CL (TEXT)](https://www.bartleby.com/isbn_cover_images/9780393284218/9780393284218_largeCoverImage.gif)
To find:
Moles and atoms of titanium in the given compounds
![Check Mark](/static/check-mark.png)
Answer to Problem 2.75QA
Solution:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.25 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium.
Explanation of Solution
Calculations:
a) 0.125 mol of FeTiO3
In one molecule of FeTiO3, there is one atom of Ti. Therefore, we can say that the mole ratio between FeTiO3: Ti is 1:1. Now, we have the mole to mole ratio, and moles of FeTiO3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of FeTiO3 contains 0.125 mol of Ti.
Now, we convert moles into atoms. We know that in every 1 mol of substance we have 6.023 * 1023 molecules or atoms of the given substance which is equal to
Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of FeTiO3 contains 7.53 * 1022 atoms of Ti.
b) 0.125 mol of TiCl4
In one molecule of TiCl4, there is one atom of Ti. Therefore, we can say the mole ratio between TiCl4: Ti is 1:1. Now, we have the mole to mole ratio and moles of TiCl4; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of TiCl4 contains 0.125 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of TiCl4 contains 7.53 * 1022 atoms of Ti.
c) 0.125 mol of Ti2O3
In one molecule of Ti2O3, there are two atoms of Ti. Therefore, we can say the mole ratio between Ti2O3: Ti is 1:2. Now, we have the mole to mole ratio and moles of Ti2O3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti2O3 contains 0.250 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.250 mol of Ti to atoms of Ti.
So, 0.125 moles of Ti2O3 contains 1.51 * 1023 atoms of Ti.
d) 0.125 mol of Ti3O5
In one molecule of Ti3O5, there are three atoms of Ti. Therefore, we can say the mole ratio between Ti3O5: Ti is 1:3. Now, we have the mole to mole ratio and moles of Ti3O5; so we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti3O5 contains 0.375 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.375 mol of Ti to atoms of Ti.
So 0.125 moles of Ti3O5 contains 2.26 * 1023 atoms of Ti.
Conclusion:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.250 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium
Want to see more full solutions like this?
Chapter 2 Solutions
CHEM:ATOM FOC 2E CL (TEXT)
- Nonearrow_forward4. Experimental Procedure. a. How many (total) data plots are to be completed for this experiment? Account for each. b. What information is to be extracted from each data plot?arrow_forwardProvide the IUPAC name of the following molecule. Don't forget to include the proper stereochemistry where appropriate.arrow_forward
- 3. 2. 1. On the graph below, plot the volume of rain in milliliters versus its height in centimeters for the 400 mL beaker. Draw a straight line through the points and label it "400 mL beaker." Volume (mL) 400 350 300 250 200 150 750 mL Florence Volume Versus Height of Water 400 mL beaker 100 50 0 0 2 3 4 5 Height (cm) 6 7 8 9 10 Explain why the data points for the beaker lie roughly on a straight line. What kind of relationship is this? How do you know? (see page 276 text) the design of the beaker is a uniform cylinder the volume of liquid increases evenly with its height resulting in a linear relationship. What volume would you predict for 10.0 cm of water? Explain how you arrived at your answer. Use the data table and the graph to assist you in answering the question. 4. Plot the volume of rain in milliliters versus its height in centimeters for the 250 mL Florence flask on the same graph. Draw a best-fit curve through the points and label it "250 mL Florence flask." oke camearrow_forwardShow work. Don't give Ai generated solutionarrow_forwardIn the video, we looked at the absorbance of a certain substance and how it varies depending on what wavelength of light we are looking at. Below is a similar scan of a different substance. What color BEST describes how this substance will appear? Absorbance (AU) Violet Blue Green Orange 1.2 1.0- 0.8- 0.6- 0.4- 0.2 0.0 450 500 550 600 650 700 Wavelength (nm) violet indigo blue green yellow orange red Red O Cannot tell from this information In the above graph, what causes -450 nm wavelength of light to have a higher absorbance than light with a -550 nm wavelength? Check all that are true. The distance the light travels is different The different data points are for different substances The concentration is different at different times in the experiment Epsilon (molar absortivity) is different at different wavelengthsarrow_forward
- 5. a. Data were collected for Trial 1 to determine the molar mass of a nonvolatile solid solute when dissolved in cyclo- hexane. Complete the table for the analysis (See Report Sheet). Record calculated values with the correct number of significant figures. B. Freezing Point of Cyclohexane plus Calculation Zone Unknown Solute 2. Mass of cyclohexane (g) 10.14 Part C.4 3. Mass of added solute (g) 0.255 C. Calculations 1. k; for cyclohexane (°C⚫ kg/mol) 20.0 2. Freezing point change, AT, (°C) 3.04 Part C.6 3. Mass of cyclohexane in solution (kg) 4. Moles of solute, total (mol) Show calculation. 5. Mass of solute in solution, total (g) 6. Molar mass of solute (g/mol) Show calculation.arrow_forwardDraw and name the R groups of all 20 amino acids.arrow_forward3. Two solutions are prepared using the same solute: Solution A: 0.14 g of the solute dissolves in 15.4 g of t-butanol Solution B: 0.17 g of the solute dissolves in 12.7 g of cyclohexane Which solution has the greatest freezing point change? Show calculations and explain.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)