The comparison of theoretical density of silver at
Answer to Problem 2.5P
The obtained density of silver at
Explanation of Solution
Given:
The density of silver at room temperature is
The lattice parameter for is
Formula used:
Write the expression to find the number of atoms per unit volume.
Here,
Write the formula to find the density of silver.
Here,
Calculation:
Silver has the Face Centered Cubic (FCC) structure with
Substitute
The molecular weight of silver is
Avogadro’s number is
Substitute
Compare the obtained density of silver at
The obtained density of silver is less than the density of silver at room temperature.
Conclusion:
Therefore, the obtained density of silver at
Want to see more full solutions like this?
Chapter 2 Solutions
Materials Science and Engineering Properties, SI Edition
- Please show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forwardFind required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward
- •Two types of concrete storm water drains are comparing: 1-pipe diameter 2m running full. 2-open channel rectangular profile, bottom width 2m and water depth 1.0 m. The drains are laid at gradient of %1.0; manning coefficient=0.013. Determine the velocity of flow and discharge rate for the circular drain. Determine the velocity of flow and discharge rate for the rectangular open culvert.arrow_forwardA1.2- For the frame shown in Figure 2, draw the bending moment, shear force, and axial force diagrams for the shown factored loading case. Note: All loads indicated in Figure 2 are already factored. W₁ = 25 kN/m Figure 2 777 6.0 m M= 10 kN.m P₁ = 20 kN 2.5 marrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forward
- Please calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease answer the following and show me the step by step soarrow_forward
- Plss answer the following show me the solution step bg steparrow_forward5. Draw the shear and moment diagrams for each member of the frame. 6kN/m B 6 m 4 m 6 kNarrow_forwardProblem #2 (Moment Distribution 11-11 from text) Determine the moments and B, C and D. El is constant. 10 k⚫ft A -10 ft→ 800 B 1.5 k/ft D E боб -20 ft- 20 ft 10 ft- 10 k⚫ftarrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning