Figure 2.33 gives the general Δ -Y transformation. (a) Show that the general transformation reduces to that given in Figure 2.16 for a balanced three-phase load. (b) Determine the impedances of the equivalent Y for the following Δ impedances: Z AB = j 10 , Z BC = j 20 , and Z CA = − j 25 Ω . Z AB = Z A Z B + Z B A C + Z C Z A Z C Z A = Z AB Z CA Z AB + Z BC + Z CA Z BC = Z A Z B + Z B A C + Z C Z A Z A Z B = Z AB Z BC Z AB + Z BC + Z CA Z CA = Z A Z B + Z B A C + Z C Z A Z B Z A = Z CA Z BC Z AB + Z BC + Z CA
Figure 2.33 gives the general Δ -Y transformation. (a) Show that the general transformation reduces to that given in Figure 2.16 for a balanced three-phase load. (b) Determine the impedances of the equivalent Y for the following Δ impedances: Z AB = j 10 , Z BC = j 20 , and Z CA = − j 25 Ω . Z AB = Z A Z B + Z B A C + Z C Z A Z C Z A = Z AB Z CA Z AB + Z BC + Z CA Z BC = Z A Z B + Z B A C + Z C Z A Z A Z B = Z AB Z BC Z AB + Z BC + Z CA Z CA = Z A Z B + Z B A C + Z C Z A Z B Z A = Z CA Z BC Z AB + Z BC + Z CA
Figure 2.33 gives the general
Δ
-Y transformation. (a) Show that the general transformation reduces to that given in Figure 2.16 for a balanced three-phase load. (b) Determine the impedances of the equivalent Y for the following
Δ
impedances:
Z
AB
=
j
10
,
Z
BC
=
j
20
, and
Z
CA
=
−
j
25
Ω
.
Z
AB
=
Z
A
Z
B
+
Z
B
A
C
+
Z
C
Z
A
Z
C
Z
A
=
Z
AB
Z
CA
Z
AB
+
Z
BC
+
Z
CA
Z
BC
=
Z
A
Z
B
+
Z
B
A
C
+
Z
C
Z
A
Z
A
Z
B
=
Z
AB
Z
BC
Z
AB
+
Z
BC
+
Z
CA
Z
CA
=
Z
A
Z
B
+
Z
B
A
C
+
Z
C
Z
A
Z
B
Z
A
=
Z
CA
Z
BC
Z
AB
+
Z
BC
+
Z
CA
Design a fifth (5th) order HPF with 8 KHz cutoff frequency, and overall gain Av=35.57dB.
Calculate the roll-off rate and draw its frequency response.
The reverse recovery charge and the peak reverse current are QH-500 uC and I-250A
respectively. Assume that the softness factor is SF=0.5, estimate
(a) The reverse recovery time of the diode trr
(b)
The rate of fall of the diode current di/dt
Q2:
A 208V, Y-connected synchronous motor is drawing 40A at unity power factor from a 208V power
system. The field current flowing under these conditions is 2.7A. Its synchronous reactance is 0.82 and its
armature resistance is 0.2 2. Assume a linear open-circuit characteristic.
1- Find EA and the torque angle.
2- How much field current would be required to make the motor operate at 0.8 PF lagging.
3- How much field current would be required to make the motor operate at 0.8 PF leading.
4- How much field current would be required to make the motor operate at unity PF.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.