Concept explainers
(a)
Interpretation:
Based on your knowledge of periodic table and its trends identify / classify the given elements as metals, metalloids and non metals.
Argon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Argon: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Argon: It is a non metal and it cannot lose electron easily.
(b)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Boron.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Boron: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Boron: metalloid, the ionization potential is in between metal and non metals.
(c)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Lead.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Lead: Metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Lead: Metal (
(d)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Arsenic.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Arsenic: Metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Arsenic: Metalloid, the ionization potential is in between metal and non metals.
(e)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Potassium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Potassium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Potassium: metal (alkali metals can easily lose outermost electron to gain noble gas configuration).
(f)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Silicon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Silicon: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Silicon: metalloid, the ionization potential is in between metal and non metals.
(g)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Iodine.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Iodine: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Iodine: non metal, need one electron to attain noble gas configuration so have high electron gain enthalpy (negative).
(h)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Antimony.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Antimony: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Antimony: metalloid, the ionization potential is in between metal and non metals.
(i)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Vanadium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Vanadium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Vanadium: Metal (transition metals have low ionization potential and are metals).
(j)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Sulfur.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Sulfur: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Sulfur: non metal, cannot lose electron easily.
(k)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Nitrogen.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 2.48P
Nitrogen: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Nitrogen: non metal, cannot lose electron easily.
Want to see more full solutions like this?
Chapter 2 Solutions
OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning