Concept explainers
(a)
Interpretation:
Based on your knowledge of periodic table and its trends identify / classify the given elements as metals, metalloids and non metals.
Argon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Argon: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Argon: It is a non metal and it cannot lose electron easily.
(b)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Boron.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Boron: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Boron: metalloid, the ionization potential is in between metal and non metals.
(c)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Lead.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Lead: Metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Lead: Metal (
(d)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Arsenic.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Arsenic: Metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Arsenic: Metalloid, the ionization potential is in between metal and non metals.
(e)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Potassium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Potassium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Potassium: metal (alkali metals can easily lose outermost electron to gain noble gas configuration).
(f)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Silicon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Silicon: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Silicon: metalloid, the ionization potential is in between metal and non metals.
(g)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Iodine.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Iodine: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Iodine: non metal, need one electron to attain noble gas configuration so have high electron gain enthalpy (negative).
(h)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Antimony.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Antimony: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Antimony: metalloid, the ionization potential is in between metal and non metals.
(i)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Vanadium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Vanadium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Vanadium: Metal (transition metals have low ionization potential and are metals).
(j)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Sulfur.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Sulfur: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Sulfur: non metal, cannot lose electron easily.
(k)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Nitrogen.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.

Answer to Problem 2.48P
Nitrogen: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Nitrogen: non metal, cannot lose electron easily.
Want to see more full solutions like this?
Chapter 2 Solutions
OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)
- Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. Predict the major products of the following reaction. Explanation Q F1 A Check F2 @ 2 # 3 + X 80 F3 W E S D $ 4 I O H. H₂ 2 R Pt % 05 LL ee F6 F5 T <6 G Click and drag to start drawing a structure. 27 & A 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center Acce Y U H DII 8 9 F10 4 J K L Z X C V B N M T H option command F11 P H commandarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s). Include all lone pairs and charges as appropriate. Ignore stereochemistry. Ignore inorganic byproducts. H :0: CH3 O: OH Q CH3OH2+ Draw Intermediate protonation CH3OH CH3OH nucleophilic addition H Draw Intermediate deprotonation :0: H3C CH3OH2* protonation H 0: H CH3 H.arrow_forwardPredicting the reactants or products of hemiacetal and acetal formation uentify the missing organic reactants in the following reaction: H+ X+Y OH H+ за Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H2O) are not shown. In the drawing area below, draw the skeletal ("line") structures of the missing organic reactants X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Explanation Check Click and drag to start drawing a structure. ? olo 18 Ar © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forward
- can someone please answer thisarrow_forwardPlease, please help me figure out the the moles, molarity and Ksp column. Step by step details because I've came up with about three different number and have no idea what I'm doing wrong.arrow_forwardwhat reagents are used to get this product from this reactant? Br OCH3arrow_forward
- can someone answer this pleasearrow_forwardcan someone do the reaction mechanism for this reaction and draw the molecules for Q2 and q3arrow_forwardIn this question, the product of the aldol condensation is shown. What would be the reactants for this product? Please provide a detailed explanation, as well as a drawing showing how the reactants will react to produce the product.arrow_forward
- 7. Propene undergoes a hydration reaction with water in the presence of an acid. a. There are two possible products for this reaction, both with the formula C,H,O. Show their structural formulas and names. (A1, B2) SCH4UR Name: (answer for part a. here!) VER 3 2021-2022 b. Which of the two products do you predict will form. Explain your choice using details from your learning. (B3)arrow_forwardWhat are the major products of the following organic reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





