OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)
OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)
11th Edition
ISBN: 9781305106734
Author: Frederick A. Bettelheim; William H. Brown; Mary K. Campbell; Shawn O. Farrell; Omar Torres
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 2, Problem 2.48P
Interpretation Introduction

(a)

Interpretation:

Based on your knowledge of periodic table and its trends identify / classify the given elements as metals, metalloids and non metals.

Argon.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Argon: non metal.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Argon: It is a non metal and it cannot lose electron easily.

Interpretation Introduction

(b)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Boron.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Boron: metalloid.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Boron: metalloid, the ionization potential is in between metal and non metals.

Interpretation Introduction

(c)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Lead.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Lead: Metal.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Lead: Metal (transition metals have low ionization potential and are metals).

Interpretation Introduction

(d)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Arsenic.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Arsenic: Metalloid.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Arsenic: Metalloid, the ionization potential is in between metal and non metals.

Interpretation Introduction

(e)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Potassium.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Potassium: metal.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Potassium: metal (alkali metals can easily lose outermost electron to gain noble gas configuration).

Interpretation Introduction

(f)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Silicon.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Silicon: metalloid.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Silicon: metalloid, the ionization potential is in between metal and non metals.

Interpretation Introduction

(g)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Iodine.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Iodine: non metal.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Iodine: non metal, need one electron to attain noble gas configuration so have high electron gain enthalpy (negative).

Interpretation Introduction

(h)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Antimony.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Antimony: metalloid.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Antimony: metalloid, the ionization potential is in between metal and non metals.

Interpretation Introduction

(i)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Vanadium.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Vanadium: metal.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Vanadium: Metal (transition metals have low ionization potential and are metals).

Interpretation Introduction

(j)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Sulfur.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Sulfur: non metal.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Sulfur: non metal, cannot lose electron easily.

Interpretation Introduction

(k)

Interpretation:

Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.

Nitrogen.

Concept Introduction:

In periodic table we classify elements as metal, nonmetal and metalloid.

Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.

Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.

Metalloids have properties in between metals and non metals.

Expert Solution
Check Mark

Answer to Problem 2.48P

Nitrogen: non metal.

Explanation of Solution

The metallic property is related to the tendency to lose electrons.

Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.

On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.

Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.

Nitrogen: non metal, cannot lose electron easily.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In Example 2-1, we established that the mass ratio of magnesium to magnesium oxide is 0.455 g magnesium/ 0.755 g magnesium oxide.(a) What is the ratio of oxygen to magnesium oxide, by mass? (b) What is the mass ratio of oxygen to magnesium in magnesium oxide?(c) What is the percent by mass of magnesium in magnesium oxide?
1. Using the various group classifications from the periodic table, assign all appropriate labels to each of the following elements. Each element will have multiple (2 or more) answers. (a) Silver (b) Tennessine (c) Samarium (d) Antimony 2. Calculate the numbers of each type of nucleon and the number of electrons in each of the following species. (a) neodymium-149 (b) tantalum-179 (c) sellenium-79 dianion (d) krypton-85 trication 3. Write the ground-state electron configuration for the following atoms or ions. Use core notation in your electron configurations at your own discretion. (a) As (b) Au (c) Ce (d) Zn2− (e) Po4+ 4. Write an appropriate set of four quantum numbers (n, l, ms & ms) that could be representative of a valence electron in each of the following atoms or ions. (a) Bi (b) Sr (c) Mo (d) Ru2+ (e) Eu 5. In theory, there are an infinite number of energy levels and atomic orbital types that we can define using the solutions to the Schrödinger…
Identify each of the following elements as a metal, nonmetal,or metalloid: (a) gallium, (b) molybdenum, (c) tellurium,(d) arsenic, (e) xenon, (f) ruthenium.

Chapter 2 Solutions

OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)

Ch. 2 - Prob. 2.11PCh. 2 - 2-12 The elements game, Part 1. Name and give the...Ch. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - 2-17 How does Dalton’s atomic theory explain: (a)...Ch. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - 2-20 Calculate the percentage of hydrogen and...Ch. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - 2-23 It has been said, “The number of protons...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - 2-26 Given these mass numbers and number of...Ch. 2 - 2-27 If each atom in Problem 2-26 acquired two...Ch. 2 - Prob. 2.28PCh. 2 - 2-29 How many protons and how many neutrons does...Ch. 2 - Prob. 2.30PCh. 2 - 2-31 Tin-118 is one of the isotopes of tin. Name...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - 2-34 There are only two naturally occurring...Ch. 2 - 2-35 The two most abundant naturally occurring...Ch. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - 2-43 Which group(s) of the Periodic Table...Ch. 2 - 2-44 Which period(s) in the Periodic Table...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - 2-47 Which element in each pair is more metallic?...Ch. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - 2-51 What is the correlation between the group...Ch. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - 2-59 You are presented with a Lewis dot structure...Ch. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - 2-64 Consider the elements B, C, and N. Using only...Ch. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - 2-67 Account for the fact that the first...Ch. 2 - Prob. 2.68PCh. 2 - 2-69 (Chemical Connections 2A) Why does the body...Ch. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - 2-73 (Chemical Connections 2D) Copper is a soft...Ch. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.77PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - 2-83 The natural abundance of boron isotopes is as...Ch. 2 - Prob. 2.84PCh. 2 - 2-85 The mass of a proton is 1.67 × 10-24g. The...Ch. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - 2-89 Assume that a new element has been discovered...Ch. 2 - Prob. 2.90PCh. 2 - 2-91 These are the first two ionization energy for...Ch. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - 2-94 Using your knowledge of trends in element...Ch. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - 2-97 Explain why the Ca3+ ion is not found in...Ch. 2 - 2-98 Explain how the ionization energy of atoms...Ch. 2 - 2-99 A 7.12 g sample of magnesium is heated with...Ch. 2 - 2-100 A 0.100 g sample of magnesium, when combined...Ch. 2 - 2-101 Complete the following table: Symbol Atomic...Ch. 2 - 2-102 An element consists of 90.51% of an isotope...Ch. 2 - 2-103 The element silver has two naturally...Ch. 2 - 2-104 The average atomic weight of lithium is...Ch. 2 - Prob. 2.105PCh. 2 - Prob. 2.106P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning