A balanced Δ -connected impedance load with ( 12 + j 9 ) Ω per phase is supplied by a balanced three-phase 60-Hz, 208-V source, (a) Calculate the line current, the total real and reactive power absorbed by the load, the load power factor, and the apparent load power, (b) Sketch a phasor diagram showing the line currents, the line-to-line source voltages, and the Δ -load currents. Use V a b as the reference.
A balanced Δ -connected impedance load with ( 12 + j 9 ) Ω per phase is supplied by a balanced three-phase 60-Hz, 208-V source, (a) Calculate the line current, the total real and reactive power absorbed by the load, the load power factor, and the apparent load power, (b) Sketch a phasor diagram showing the line currents, the line-to-line source voltages, and the Δ -load currents. Use V a b as the reference.
A balanced
Δ
-connected impedance load with
(
12
+
j
9
)
Ω
per phase is supplied by a balanced three-phase
60-Hz,
208-V
source, (a) Calculate the line current, the total real and reactive power absorbed by the load, the load power factor, and the apparent load power, (b) Sketch a phasor diagram showing the line currents, the line-to-line source voltages, and the
Δ
-load currents. Use
V
a
b
as the reference.
Not: I need also pictures
cct diagram and result
Question:
I need a MATLAB/Simulink model for a
Boost Converter used to charge a battery,
powered by a PV solar panel. The model
should include:
1. A PV solar panel as the input power
source.
2. A Boost Converter circuit for voltage
regulation.
3. A battery charging system.
4. Simulation results showing voltage,
current, and efficiency of the system.
Important: Please provide:
1. The Simulink file of the model.
2. Clear screenshots showing the circuit
connections in MATLAB/Simulink.
3. Screenshots of the simulation results
(voltage, current, efficiency, etc.).
A Butterworth low-pass filter has the following specification: max = 0.5 dB, min =30dB p = 750rad/s and s = 1750rad/si) Determine the TF for Butterworth LP filterii) Q of the polesiii) Determine the half-power frequency 0iv) Determine the actual attenuation at the edge of the pass-band and the edge of the stop-band, (p) and (s).
Find the inverse of Laplace transform
s-1
5+5
, Re[s]>-3
(s+1)(s-3)
s+5
a)
s²(s+3)
b)
c)
(S-1)(s+1)2
d)
s+5
, i) Re[s]> 3 ii) Re[s]-1 ii) Re[s] 1
(s-1)(s-2)(s-3)'
, i) Re[s]> 3 ii) Re[s]<1 iii) I
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.