
EBK POWER SYSTEM ANALYSIS AND DESIGN
6th Edition
ISBN: 9781305886957
Author: Glover
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.8MCQ
To determine
The average power in the single-phase ac circuit for sinusoidal-steady-state excitationwith a purely inductive load.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
3. Describe the function of PLL circuit.
4. Describe the function of bandpass filter.
ASK Modulator/Demodulator
U1
VD Signal in
VT out
X1
W
R1
VC Carrier in
w
x2
100K
3
Y1
4
Y2 AD633 Z
VR1
10K
VR1
Multiplier(1)
I
U2
Vx out
X1
W
R3
2
w
x2
In2
100K
3
۲۱
I
Y2 AD633
Z
VR2
R2
10K
C4
100K
VR2
Multiplier(2)
+5V
200p
R5
R6
R101K
ww w
2.7K
22K
1N4148
D1
559
VE out
D+
In(ac)
6 0H
200p
HH
6
VLP out
Vo out
U3
VR
0.01
0.1u
R8
VR3
ww
50K
Envelope Detector
10K
U3
LF356
VR3
LPF
U4Σ
LM311
Comparator
U5
PLL in CS
HH
14 SIGN IN
0.1u
6 CIA
PC1OUT 2
PULSES
PHASE(2)
COMPARATOR OUT 13.
C10
HT
150p R16
ww
R12
VSO
C6
200p
VCO OUT 4
IK
in
R14
C9
18K
10 O
w
7 Cle
H
VLO out
6
15K
VCO
150p
06
11 R1
CD4046
VCO IN 9
VR5
1K
12 R2
0.0047u
C7
I
Demod
C8 out
10
SOURCE
FOLLOWER
R11
100K
INH
COMP IN
5
3
VR4
+5V+12V GND-12V
о
HTO
0.1u
R13
10K
I
PL
VR5
Figure 18-10 KL-94005 module
R15
U6Σ
OP37
BPF
DUC
1. Is the waveform on VT out terminal an ASK modulated signal?
TS
PROD
2. Is the waveform on VT out terminal an OOK modulated signal?
ASK Modulator/Demodulator
U1
VD Signal in
VT out
X1
W
R1
VC Carrier in
w
x2
100K
3
Y1
4
Y2 AD633 Z
VR1
10K
VR1
Multiplier(1)
I
U2
Vx out
X1
W
R3
2
w
x2
In2
100K
3
۲۱
I
Y2 AD633
Z
VR2
R2
10K
C4
100K
VR2
Multiplier(2)
+5V
200p
R5
R6
R101K
ww w
2.7K
22K
1N4148
D1
559
VE out
D+
In(ac)
6 0H
200p
HH
6
VLP out
Vo out
U3
VR
0.01
0.1u
R8
VR3
ww
50K
Envelope Detector
10K
U3
LF356
VR3
LPF
U4Σ
LM311
Comparator
U5
PLL in CS
HH
14 SIGN IN
PC1OUT 2
0.1u
6 CIA
PULSES
PHASE(2)
COMPARATOR
OUT 13
C10
HT
150p R16
ww
R12
VSO
18K
C6
200p
VCO OUT 4
IK
in
R14
C9
10 O
w
H
VLO out
6
7 Cle
15K
VCO
150p
06
11 R1
CD4046
VCO IN 9
VR5
1K
12 R2
0.0047u
C7
I
Demod
C8 out
10
SOURCE
FOLLOWER
R11
100K
INH
COMP IN
5
3
VR4
+5V+12V GND-12V
о
HTO
0.1u
R13
10K
I
PL
Figure 18-10 KL-94005 module
VR5
R15
U6Σ
OP37
BPF
h
e
6. Discuss the relationship between Vx out and VLP out signals.
7. Describe the function of comparator.
ASK Modulator/Demodulator
U1
VD Signal in
VT out
X1
W
R1
VC Carrier in
w
x2
100K
3
Y1
4
Y2 AD633 Z
VR1
10K
VR1
Multiplier(1)
I
U2
Vx out
X1
W
R3
2
w
x2
In2
100K
3
۲۱
I
Y2 AD633
Z
VR2
R2
10K
C4
100K
VR2
Multiplier(2)
+5V
200p
R5
R6
R101K
ww w
2.7K
22K
1N4148
D1
559
VE out
D+
In(ac)
6 0H
200p
HH
6
VLP out
Vo out
U3
VR
0.01
0.1u
R8
VR3
ww
50K
Envelope Detector
10K
U3
LF356
VR3
LPF
U4Σ
LM311
Comparator
U5
PLL in CS
HH
14 SIGN IN
0.1u
6 CIA
PC1OUT 2
PULSES
PHASE(2)
COMPARATOR OUT 13.
C10
HT
150p R16
ww
R12
VSO
C6
200p
VCO OUT 4
IK
in
R14
C9
18K
10 O
w
7 Cle
H
VLO out
6
15K
VCO
150p
06
11 R1
CD4046
VCO IN 9
VR5
1K
12 R2
0.0047u
C7
I
Demod
C8 out
10
SOURCE
FOLLOWER
R11
100K
INH
COMP IN
5
3
VR4
+5V+12V GND-12V
о
HTO
0.1u
R13
10K
I
PL
VR5
Figure 18-10 KL-94005 module
R15
U6Σ
OP37
BPF
Chapter 2 Solutions
EBK POWER SYSTEM ANALYSIS AND DESIGN
Ch. 2 - The rms value of v(t)=Vmaxcos(t+) is given by a....Ch. 2 - If the rms phasor of a voltage is given by V=12060...Ch. 2 - If a phasor representation of a current is given...Ch. 2 - Prob. 2.4MCQCh. 2 - Prob. 2.5MCQCh. 2 - Prob. 2.6MCQCh. 2 - Prob. 2.7MCQCh. 2 - Prob. 2.8MCQCh. 2 - Prob. 2.9MCQCh. 2 - The average value of a double-frequency sinusoid,...
Ch. 2 - The power factor for an inductive circuit (R-L...Ch. 2 - The power factor for a capacitive circuit (R-C...Ch. 2 - Prob. 2.13MCQCh. 2 - The instantaneous power absorbed by the load in a...Ch. 2 - Prob. 2.15MCQCh. 2 - With generator conyention, where the current...Ch. 2 - Consider the load convention that is used for the...Ch. 2 - Prob. 2.18MCQCh. 2 - The admittance of the impedance j12 is given by...Ch. 2 - Consider Figure 2.9 of the text, Let the nodal...Ch. 2 - The three-phase source line-to-neutral voltages...Ch. 2 - In a balanced three-phase Y-connected system with...Ch. 2 - In a balanced system, the phasor sum of the...Ch. 2 - Consider a three-phase Y-connected source feeding...Ch. 2 - For a balanced- load supplied by a balanced...Ch. 2 - A balanced -load can be converted to an...Ch. 2 - When working with balanced three-phase circuits,...Ch. 2 - The total instantaneous power delivered by a...Ch. 2 - The total instantaneous power absorbed by a...Ch. 2 - Under balanced operating conditions, consider the...Ch. 2 - One advantage of balanced three-phase systems over...Ch. 2 - While the instantaneous electric power delivered...Ch. 2 - Given the complex numbers A1=630 and A2=4+j5, (a)...Ch. 2 - Convert the following instantaneous currents to...Ch. 2 - The instantaneous voltage across a circuit element...Ch. 2 - For the single-phase circuit shown in Figure...Ch. 2 - A 60Hz, single-phase source with V=27730 volts is...Ch. 2 - (a) Transform v(t)=75cos(377t15) to phasor form....Ch. 2 - Let a 100V sinusoidal source be connected to a...Ch. 2 - Consider the circuit shown in Figure 2.23 in time...Ch. 2 - For the circuit shown in Figure 2.24, compute the...Ch. 2 - For the circuit element of Problem 2.3, calculate...Ch. 2 - Prob. 2.11PCh. 2 - The voltage v(t)=359.3cos(t)volts is applied to a...Ch. 2 - Prob. 2.13PCh. 2 - A single-phase source is applied to a...Ch. 2 - Let a voltage source v(t)=4cos(t+60) be connected...Ch. 2 - A single-phase, 120V(rms),60Hz source supplies...Ch. 2 - Consider a load impedance of Z=jwL connected to a...Ch. 2 - Let a series RLC network be connected to a source...Ch. 2 - Consider a single-phase load with an applied...Ch. 2 - A circuit consists of two impedances, Z1=2030 and...Ch. 2 - An industrial plant consisting primarily of...Ch. 2 - The real power delivered by a source to two...Ch. 2 - A single-phase source has a terminal voltage...Ch. 2 - A source supplies power to the following three...Ch. 2 - Consider the series RLC circuit of Problem 2.7 and...Ch. 2 - A small manufacturing plant is located 2 km down a...Ch. 2 - An industrial load consisting of a bank of...Ch. 2 - Three loads are connected in parallel across a...Ch. 2 - Prob. 2.29PCh. 2 - Figure 2.26 shows three loads connected in...Ch. 2 - Consider two interconnected voltage sources...Ch. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - A balanced three-phase 240-V source supplies a...Ch. 2 - Prob. 2.41PCh. 2 - A balanced -connected impedance load with (12+j9)...Ch. 2 - A three-phase line, which has an impedance of...Ch. 2 - Two balanced three-phase loads that are connected...Ch. 2 - Two balanced Y-connected loads, one drawing 10 kW...Ch. 2 - Three identical impedances Z=3030 are connected in...Ch. 2 - Two three-phase generators supply a three-phase...Ch. 2 - Prob. 2.48PCh. 2 - Figure 2.33 gives the general -Y transformation....Ch. 2 - Consider the balanced three-phase system shown in...Ch. 2 - A three-phase line with an impedance of...Ch. 2 - A balanced three-phase load is connected to a...Ch. 2 - What is a microgrid?Ch. 2 - What are the benefits of microgrids?Ch. 2 - Prob. CCSQCh. 2 - Prob. DCSQ
Knowledge Booster
Similar questions
- Choose one of the choices indicated in the parentheses such as the following sentences have correct messing What is the main purpose of a communication system? a) To transmit information from one point to another b) To amplify signals for better reception c) To filter out unwanted noise dy To generate carrier waves for modulation 2. What the purpose of the modulator in a communication system? a) To generate the cares wave for modulation b) To convert the information signal to a modulated signal c) To filter out unwanted noise d) To amplify the modulated signal for transmission Which component in an FM transmitter is responsible for generating the carrier signal? a) Mixer b) Modulator c) Demodulator d) Oscillator 4 For a FM signal v(t) 25 cos (15 deviation 10 (3456 4 24669, 7321 7.21284) 117 10 sm 15501). Maximum frequency 5. In an AM receiver, which component is responsible for separating the modulating signal from the received AM signal? a) Mixer b) Modulator c) Demodulator dy…arrow_forwardQ1. Choose the correct answer: 1. Increasing the amplitude of a square pulse (increases, decreases, maintains not related) the spectrum range in the frequency domain. 2. A continuous FT indicates a signal. (continuous, discrete, periodic non-periodic). the pulse duration is proportional to the amplitude of the signal. (PAM, PWM, PPM, 3. In ASK). . In VSB transmission (both sidebands are used, single sideband is used, single sideband and part of the other sideband, only the vestige of the carrier signal is used). 5. An economic FDM receiver design should contain simultaneous reception, selective reception). 6. In AMI code, the shapes of "1" and "0" are dependent, not related to each other). 7. In FDM the guard band is used to (pilot carrier zero crossing detector, (the same) opposite to each other, next bit increase the overlap between FDM signals, decrease the overlap between FDM signals, increase the baseband bandwidth, decrease the baseband bandwidth). 20 3. Higher number of levels…arrow_forwardIn a railway system with a power source of 600 VDC, I need to achieve a load output of 120 VDC for railway lights. I found a DC-DC converter capable of stepping down 600 VDC to 125 VDC. To obtain 120 VDC from this converter, we can use a voltage divider with the following equation: [R2/(R2+R1)]=120/125=0.96=0.96However, using resistors to achieve the desired output voltage raises some concerns. Is it advisable to use railway-grade resistors for this application? I found some resistors in the range of 1-10k ohms, but I am unsure how they should be connected in the circuit with the lights (the load to be used). I would greatly appreciate any suggestions or schematic diagrams to clarify the best approach for connecting the resistors in this setup.arrow_forward
- Find the valve of the voltage Vx using the THEVENIN equivalent circuit and redo the problem with the NORTON equivalent circuit. Show both the the vinen and Norton circuits. I 12V m 1 ww 3 23 + 43Vx 5 63 миarrow_forwardFind the valve of V using the Thevenin Equivalent Circuit and then determine if the 8 ohm resistor allows maximum power transfer. If not, then what value should the 8 ohm resistor be changed to for maximum power transfer? ZA 6 6 + 22V 83 V 34 2 6 АААА ААААarrow_forwardFind the valve of voltage Vx using the THE VIN IN equivalent circuit ww 8 Show the Theven in Circuit. I 7V ZV m 6 5 M + 4 34 АА 3 1 АААА 9A ↑ 24arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning

Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning