Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.38P
One-dimensional, steady-state conduction with no energy generation is occurring in a cylindrical shell of inner radius
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. Consider one-dimensional transient heat conduction in a plane wall with thickness L and
constant properties. The boundary and initial conditions are given in Figure 2, and are constants.
There is no heat generation within the wall. Find the temperature, T(x,t), within the wall
t=0, T=T,
q" = 0
1. Consider 1-D steady heat conduction in a composite plane wall (shown below) consisting of
two layers A and B in perfect contact at the interface. The wall involves no heat generation.
The nodal network of the wall consists of nodes 0 (at the left face), 1 (at the interface), and 2
(at the right face) with a uniform nodal spacing of Ax. Using the energy balance approach,
obtain the finite difference formulation of this problem for the case of insulation at the left
boundary (node 0) and radiation at the right boundary (node 2) with an emissivity of ɛ and
surrounding temperature of Tsur.
A
B
Radiation
Insulated
Tsurr
Ax
2
Assume steady-state, one-dimensional heat conduction through the symmetric shape shown in Figure 1.Assuming that there is no internal heat generation, derive an expression for the thermal conductivity k(x) for these conditions: A(x) = (1 -x), T(x) = 300(1 - 2x –x3),and q = 6000 W, where A is in square meters, T in Kelvin’s, and x in meters. Consider x= 0 and 1.
Chapter 2 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r, has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - A young engineer is asked to design a thermal...Ch. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forwardDerive a 2 dimensional transient heat conduction equation for a hot coffee in a mug. Assume that the coffee has a uniform temperature of 56 degree Celsius. Sketch the schematic diagram and propose your assumption for the derivation of the heat transfer equation.arrow_forwardAssume steady-state, one-dimensional heat conduction through the symmetric shape shown in Figure 1. Assuming that there is no internal heat generation, derive an expression for the thermal conductivity k(x) for these conditions: A(x) = (1 - x), T(x) = 300(1 - 2x - x3), and q = 6000 W, where A is in square meters, T in kelvins, and x in meters. Consider x= 0 and 1.arrow_forward
- Assume steady-state, one-dimensional heat conduction through the symmetric shape shown in Figure 1. Assuming that there is no internal heat generation, derive an expression for the thermal conductivity k(x) for these conditions: A(x) = (1 - x), T(x) = 300(1 - 2x - x3), and q = 6000 W, where A is in square meters, T in kelvins, and x in meters. Consider x= 0 and 1.arrow_forwardFind the steady temperature distribution in the semi infinite plate shown below. The 2D steady heat conduction equation is: use the method of separation of variables.arrow_forward!arrow_forward
- Can you help me with question 2 show all the steps taken.arrow_forward2. Consider steady one-dimensional heat conduction in a pin fin of constant diameter D, like the one shown below, with constant thermal conductivity k. The fin is losing heat by convection to the ambient air at T, with a heat transfer coefficient of h. The nodal network of the fin consists of nodes 0 (at the base), 1 (in the middle), and 2 (at the fin tip) with a uniform nodal spacing of Ax. Using the energy balance approach, obtain the finite difference formulation of this problem to determine T, and T, for the case of specified temperature at the fin base and negligible heat transfer at the fin tip. Temperatures are in °C. D Larrow_forwardAn axisymmetric shape solid block with constant properties and no internal heat generation is used for a steady-state, one-dimensional heat conduction as shown in Figure. The walls at top and bottom are an excellent heat insulator. Sketch the temperature distribution along x-axis. Explain the shape of your sketcharrow_forward
- Do fast i will give you good ratearrow_forwardDerive the combined one-dimensional heat conduction equation.arrow_forwardConsider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license