Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.36P
Derive the heat diffusion equation, Equation 2.29. for spherical coordinates beginning with the differential control volume shown in Figure 2.13.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
b) Using the heat diffusion equation which you have derived in part (a).
Let consider a one-dimensional plane wall that separate of two fluids which
is illustrated in Figure lb with constant properties (e.g. thermal
conductivity, k) and uniform internal generation (e.g. no heat generation)
and steady state condition (e.g no change in the amount of energy storage)
i) Find the expression of temperature distribution, T(x)
ii) and the expression of heat flow, q
Ts.
Cold fluid
T2 h2
Hot fluid
T2
T1. h
Lox
x = L
Figure 1b
What assumptions were used to derive the following (simplified) version of the heat diffusion equation: VT=0
Steady State
Constant Properties
No Thermal Energy Generation
1 Dimensional
3. A thin metallic wire of thermal conductivity k, diameter D, and length 2L is annealed by passing
an electrical current through the wire to induce a uniform volumetric heat generation åg. The
ambient air around the wire is at a temperature To, while the ends of the wire at x
Chapter 2 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r, has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - A young engineer is asked to design a thermal...Ch. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Hello how are you doing ? Please the questions is on the image and all the details thanks you so much for your helparrow_forwardOne more time. PLEASE explain how the integral is formed, dT/dr doesn't make sense. Why we are replacing L with dr? dr is in radial direction and L is in the vertical direction.arrow_forwardAn electrical resistance wire made of tungsten dissipates heat to the surroundings at a constant rate. Which of the following equations are you going to use to compute for the temperature at any point within the wire when the temperature throughout the whole wire no longer changes with time? Assume that the wire can be approximated as a thin cylinder. a. Fourier-Biot equation b. Poisson equation c. Diffusion equation d. Laplace equationarrow_forward
- Please help me answer question 1, show all the steps taken.arrow_forwardi need the answer quicklyarrow_forward1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward
- 2. Heat transfer coefficients can be difficult to measure, particularly for situations involving fast-moving fluids. In some cases however, the magnitude of the heat transfer coefficients can be estimated to a sufficient degree to enable further analysis of the larger problem. In a situation such as that described in the preceding paragraph, heat transfer occurs through the planar wall shown in the figure below. Two thermal situations are to be considered. In case I, the temperature of the fluid to the left of the wall is 130.5 °F and the fluid on the right is at 71.3 °F. Both sides of the planar wall are washed by fast- moving water. The exact values of the convective heat transfer coefficients are unknown. The heat flux through the wall is measured to be 42.6 Btu/hr-ft². 2 inches Tfl h₁ T₁ T₂ T₁² 11₂arrow_forwardNuclear fuel rods. A typical nuclear fuel rod contains circular uranium oxide (UO2) fuel pellets 10 mm in diameter and 5-mm thick stacked in a column to a length of 4 m inside a thin zirconium alloy tube, as shown below. The pellets generate heat uniformly throughout their volume due to nuclear fission, with a power density a (i.e., the heat power produced per unit volume of the pellet) that depends on their 235U enrichment. This heats up the water in the reactor to produce steam to drive the turbine. Assuming that the rim of the fuel pellet is maintained at a constant temperature Trim due to water cooling, show that the steady-state temperature profile T(r), where r is the radial distance from the centre of the pellet and fuel rod, 4. P(R? -r²; is given by: T(r) = Tim + 4k where k is the thermal conductivity of the pellet and R is its radius. partial stacked column of fuel pellets in rodarrow_forwardHi, kindly solve this problem and show the solution. Thank youarrow_forward
- Derive an expression for the temperature distribution within a sphere that has inner radius r, where the temperature T, and outer radius r, where the temperature T,. Assume the heat source within the wall of sphere is q' and the heat conductivity is k. also assume one-dimensional heat transfer (r - direction)arrow_forwardThe heat diffusion equation provides the temperature distribution for a given conduction application. However, it does not directly provide the heat flow. Choose an option: TrueFalsearrow_forwardPROBLEM: IVD-39 BOOK: ENGINEERING THERMOFLUIDS, M. MASSOUDarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license