
Fundamentals Of Thermodynamics
10th Edition
ISBN: 9781119494966
Author: Borgnakke, C. (claus), Sonntag, Richard Edwin, Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.34P
Saturated water vapor at 200 kPa is in a constant-pressure piston cylinder assembly. At this state the piston is 0.1 m from the cylinder bottom. How much is this distance, and that is the temperature if the water is cooled to occupy half of the original volume? Repeat for a doubling of the volume.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider a glass window (Hight = 1.2 m, Width = 2 m). The room thatfaces the window are maintained at 25 o C. The average temperature ofthe inner surface of the window is 5 o C. Calculate the total heat transferrate from through the window a) IdenCfy what type(s) of convecCon is important (circle one). • external forced (Chapter 7)• internal forced (Chapter 8)• natural convecCon (Chapter 9)• boiling and condensaCon (Chapter 10)b) IdenCfy the necessary equaCon(s) needed to solve the problem. c) IdenCfy important fluid properCes you need to solve the problem. d) Calculate the total heat transferred.
Water is condensing on a square plate (0.5 m x 0.5 m) placed verCcally. If the desired rate ofcondensaCon is 0.016 kJ/s, determine the necessary surface temperature of the plate at atmosphericpressure. Assume the film temperature of 90 o C for evaluaCon of fluid properCes of water and thesurface temperature of 80 o C for the evaluaCon of modified latent heat of vaporizaCon
Water at 20 o C enters the 4 cm-diameter, 14 m-long tube at a rate of 0.8 kg/s. The surfacetemperature of the pipe is maintained at 165 o Cby condensing geothermal stream at the shellside of the heat exchanger. Use water properCesat 85 o C for all calculaCons.(a) Show that the water flow is turbulent and thermally fully developed. (b) EsCmate the heat transfer coefficient for convecCve heat transfer from the pipe to the water. For a fully developed turbulent flow within the smooth pipe, the Nu number can becalculated from the following equaCon:(c) Calculate the exit temperature of the water. (d) Share your opinion on whether the use of water properties at 85°C is appropriate. Yes or No because:
Chapter 2 Solutions
Fundamentals Of Thermodynamics
Ch. 2 - Are the pressure in the tables absolute or gauge...Ch. 2 - What is the minimum pressure for liquid carbon...Ch. 2 - When you skate on ice, a thin liquid film forms...Ch. 2 - Is it possible to have water vapor at 5 ?Ch. 2 - At higher elevations, as in mountains, air...Ch. 2 - Water at room temperature and room pressure has...Ch. 2 - Can a vapor exist below the triple point...Ch. 2 - Ice cubes can disappear and food can dry out...Ch. 2 - In Example 2.lb, is there any mass at the...Ch. 2 - Prob. 2.10P
Ch. 2 - Locate the state of R410A at 500kPa,10C . Indicate...Ch. 2 - How does a constant-v process for an ideal an as...Ch. 2 - Prob. 2.13PCh. 2 - As the pressure of a gas becomes larger, Z becomes...Ch. 2 - Carbon dioxide at 280K can be in three different...Ch. 2 - Find the lowest temperature at which it is...Ch. 2 - Water at 27C can exist in different phases,...Ch. 2 - Dry ice is the name of solid carbon dioxide. How...Ch. 2 - A substance is at 2MPa and 17C in a rigid tank....Ch. 2 - Determine the phase for each of these cases a....Ch. 2 - Determine the phase of water at a. T260°C.P5MPa b....Ch. 2 - Determine the phase of the substance at the given...Ch. 2 - Give the missing property of PvT and x for water...Ch. 2 - Determine whether refrigerant R410A in each of the...Ch. 2 - Show the states in Problem 2.24 in a sketch of the...Ch. 2 - Fill out the following table for substance...Ch. 2 - Place the two states ab listed in Problem 2.26 as...Ch. 2 - Determine the specific volume for R410A at these...Ch. 2 - Place the three states ac listed in previous...Ch. 2 - Find P and x for CH4 at a. T=155K,v=0.04m3/kg b....Ch. 2 - Give the specific volume of carbon dioxide at 40C...Ch. 2 - You want a pot of water to boil at 105C . How...Ch. 2 - Water at 400kPa a quality of 75 has its pressure...Ch. 2 - Saturated water vapor at 200kPa is in a...Ch. 2 - Saturated liquid water at 60C is put under...Ch. 2 - A constant pressure piston cylinder has water at...Ch. 2 - A glass jar is filled with saturated water at...Ch. 2 - Saturated vapor R4l0A at 60C has to pressure...Ch. 2 - Ammonia at 20C with a quality of 50 and a total...Ch. 2 - Repeat the previous problem if the outlet valve is...Ch. 2 - R134a is in a sealed, rigid vessel of 2m3 as...Ch. 2 - A storage tank holds methane at 120K , with a...Ch. 2 - A 400m3 storage tank is being constructed to hold...Ch. 2 - Carbon dioxide at 6000kPa,40C is cooled in a...Ch. 2 - A pressure cooker has the lid screwed on tight. A...Ch. 2 - A 1m3 tank is filled with a gas at room...Ch. 2 - A pneumatic cylinder (a piston cylinder with air)...Ch. 2 - Is it reasonable to assume that at the given...Ch. 2 - Helium in a steel tank is at 250kPa,300K with a...Ch. 2 - A spherical helium balloon l0m in diameter is at...Ch. 2 - A glass is cleaned in hot water at 35°C and placed...Ch. 2 - Air in a car tire is initially at 10C and 190kPa ....Ch. 2 - A rigid tank of 1m3 contains nitrogen gas at...Ch. 2 - Assume we have three states of saturated vapor...Ch. 2 - Do Problem 2.54 for R-410A Assume we have three...Ch. 2 - Do problem 2.54 for the substance ammonia. Assume...Ch. 2 - A cy1inica1 gas tank 1m long, with an inside...Ch. 2 - Ammonia in a piston cylinder arrangement is at...Ch. 2 - Find the compressibility factor (Z) for saturated...Ch. 2 - Find the compressibility factor for methane at a....Ch. 2 - Find the compressibility for carbon dioxide at 60C...Ch. 2 - What is the percent error in specific volume if...Ch. 2 - Estimate the saturation pressure of R142b at 300K...Ch. 2 - A bottle a volume of 0.1m3 contains butane with a...Ch. 2 - Find the volume of 2kg of ethylene at 270K,2500kPa...Ch. 2 - Argon is kept in a rigid 5m3 tank at 30C and 3MPa...Ch. 2 - A new refrigerant, R152a . is stored as a liquid...Ch. 2 - Determine the pressure of nitrogen at...Ch. 2 - Determine the pressure of nitrogen at...Ch. 2 - Carbon dioxide at 60C is pumped at a very high...Ch. 2 - Solve Problem 2.70 using the Soave EOS. Notice...Ch. 2 - A tank contains 8.35kg of methane in 0.1m3 at 250K...Ch. 2 - Do the previous problem using the Redlich-Kwong...Ch. 2 - Do the Problem 2.72 using the Soave EOS.Ch. 2 - Determine the unknowns of T, v and x if two phase...Ch. 2 - Give the phase and the missing properties of P, T,...Ch. 2 - Refrigerant R410A in a piston/cylinder arrangement...Ch. 2 - Water in a piston cylinder is at 90C,100kPa , and...Ch. 2 - A tank contains 2kg of saturated ammonia vapor at...Ch. 2 - A container with liquid nitrogen at l00K has a...Ch. 2 - Determine the mass of methane gas stored in a 2m3...Ch. 2 - What is the percent error in pressure if the ideal...Ch. 2 - Prob. 2.83PCh. 2 - Use a linear interpolation to estimate the missing...Ch. 2 - Use a linear interpolation to estimate Tsat at...Ch. 2 - Use a double linear interpolation to find the...Ch. 2 - Cabbage needs to be cooked (boiled) at 250 F. What...Ch. 2 - Prob. 2.88EPCh. 2 - If I have 1ft3 of ammonia at 15psia,60F , what is...Ch. 2 - Locate the state of R410A at 30 psia, 20F ....Ch. 2 - A substance is at 300lbf/in.2,65F in a rigid tank....Ch. 2 - For water at 1 atm with a quality of 10 find the...Ch. 2 - Determine the phase of the substance at the given...Ch. 2 - Give the phase and the missing property of P, T,...Ch. 2 - Fill out the following table for substance...Ch. 2 - Give the phase and the specific volume for the...Ch. 2 - Give the missing property of P, T, v, and x for a....Ch. 2 - Saturated liquid water at 150F is put under...Ch. 2 - You want a pot of water to boil at 220F . How...Ch. 2 - Saturated water vapor 240F has its pressure...Ch. 2 - Saturated vapor R4l0A at 100F has its pressure...Ch. 2 - A glass jar is filled with saturated water at 300F...Ch. 2 - A pressure cooker has the lid screwed on tight. A...Ch. 2 - Prob. 2.104EPCh. 2 - Repeat the previous problem if the outlet valve is...Ch. 2 - A cylindrical gas tank 3ft long, with an inside...Ch. 2 - A spherical helium balloon 30ft in diameter is at...Ch. 2 - Helium in a steel tank s at 36psia , 540R with a...Ch. 2 - A 35ft3 rigid tank has propane at 25psia,540R and...Ch. 2 - What is the percent error in specific volume if...Ch. 2 - Air in a car tire is initially at 10F and 30psia ....Ch. 2 - R4l0A at 200psia , 100F is cooled in a closed...Ch. 2 - Refrigerant- 410A in a piston cylinder arrangement...Ch. 2 - A substance is at 70F,300Ibf/in.2 in a 10ft3 tank....Ch. 2 - Estimate the saturation pressure of R142b at 540R...Ch. 2 - Determine the mass of an ethane gas stored in a...Ch. 2 - Determine the pressure of R410Aat100F,v=0.2ft3/ibm...Ch. 2 - What is the percent error in pressure if the ideal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Porter’s competitive forces model: The model is used to provide a general view about the firms, the competitors...
Management Information Systems: Managing The Digital Firm (16th Edition)
Why would it be incorrect to add the modifier const, as shown here, to the function declaration for the member ...
Problem Solving with C++ (10th Edition)
What role does the symbol table play in a compiler?
Concepts Of Programming Languages
Describe four uses of a primary key.
Database Concepts (8th Edition)
Summarize the following rats-nest routine with a single if-else statement: if X 5 then goto 80 X = X + 1 goto ...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
ICA 13-22
As a reminder, the Reynolds number is discussed in Chapter 9. Dimensionless Number.
When discussing t...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a hot automotive engine, which can beapproximated as a 0.5-m-high, 0.40-m-wide, and 0.8-m-long rectangular block. The bottom surface of the block isat a temperature of 100°C and has an emissivity of 0.95.The ambient air is at 20°C, and the road surface is at25°C. Determine the rate of heat transfer from the bottomsurface of the engine block by convection and radiationas the car travels at a velocity of 80 km/h. Assume theflow to be turbulent over the entire surface because of theconstant agitation of the engine block. a) Calculate convective heat transfer coefficient (h). b) Calculate the total heat transfer ratearrow_forward8 mm- Top view -200 mm-180 mm- D B B 12 mm Side view B -8 mm D PROBLEM 1.56 In an alternative design for the structure of Prob. 1.55, a pin of 10-mm-diameter is to be used at A. Assuming that all other specifications remain unchanged, determine the allowable load P if an overall factor of safety of 3.0 is desired. PROBLEM 1.55 In the structure shown, an 8- mm-diameter pin is used at A, and 12-mm- diameter pins are used at B and D. Knowing that the ultimate shearing stress is 100 MPa at all connections and that the ultimate normal stress is 250 MPa in each of the two links joining B and D, determine the allowable load P if an overall factor of safety of 3.0 is desired. 20 mm P 8 mm- 12 mm- Front viewarrow_forwardWhere on the beam below is the Maximum Deflection likely to occur? 2P A "ती Point A Point B Point C Point D Point B or Point D ८ B पarrow_forward
- Sign in ||! PDE 321 proje X IMB321 PDF Lecture 5 X PDF Planet Ec X PDF Planet Ec X PDF PEABWX PDF meeting x PDF GSS Quo X PDF File C:/Users/KHULEKANI/Downloads/CIVE%20281%20Ass-2.pdf Draw | | All | a | Ask Copilot + 1 of 7 | D SOLUTION B PROBLEM 12.16 Block 4 has a mass of 40 kg, and block B has a mass of 8 kg. The coefficients of friction between all surfaces of contact are μ, = 0.20 H = 0.15. Knowing that P = 50 N→, determine (a) the acceleration of block B, (b) the tension in the cord. Constraint of cable: 2x + (x-x1) = x + x = constant. a+ag = 0, or aB = -a Assume that block A moves down and block B moves up. Block B: +/ΣF, = 0: NAB - WB cos 0 = 0 =ma: -T+μN + Wsin = We as g + ΣΕ We Eliminate NAB and aB- NAB B Nas HN UNA A NA -T+W(sin+μcоsе) = WB- g VD"M- g Block A: +/ΣF, = 0: NA-NAB - W₁cos + Psinė = 0 N₁ = N AB+W cose - Psin = (WB+WA)cose - Psinė ΣF=ma -T+Wsino-FAB-F + Pcos = CIVE 281 X + Ждал g Q | го || حالم ☑arrow_forwardWhere on the below beam is the Maxiumum Slope likely to occur? 120 Point A Point B Point C Point B or Point C B сarrow_forwardA very thin metallic sheet is placed between two wood plates of different thicknesses. Theplates are firmly pressed together and electricity is passed through the sheet. The exposed surfaces ofthe two plates lose heat to the ambient fluid by convection. Assume uniform heating at the interface.Neglect end effects and assume steady state.[a] Will the heat transfer through the two plates be the same? Explain.[b] Will the exposed surfaces be at the same temperature? Explainarrow_forward
- Design consideration requires that the surface of a small electronic package be maintained at atemperature not to exceed 82 o C. Noise constraints rule out the use of fans. The power dissipated inthe package is 35 watts and the surface area is 520 cm2 . The ambient temperature and surroundingwalls are assumed to be at 24 o C. The heat transfer coefficient is estimated to be 9.2 W/m2- oC andsurface emissivity is 0.7. Will the package dissipate the required power without violating designconstraints?arrow_forwardConsider radiation from a small surface at 100 oC which is enclosed by a much larger surface at24 o C. Determine the percent increase in the radiation heat transfer if the temperature of the smallsurface is doubled.arrow_forwardA small electronic package with a surface area of 820 cm2 is placed in a room where the airtemperature is 28 o C. The heat transfer coefficient is 7.3 W/m2 - o C. You are asked to determine if it isjustified to neglect heat loss from the package by radiation. Assume a uniform surface temperature of78 o C and surface emissivity of 0.65 Assume further that room’s walls and ceiling are at a uniformtemperature of 16 o C.arrow_forward
- A hollow metal sphere of outer radius or = 2 cm is heated internally with a variable output electricheater. The sphere loses heat from its surface by convection and radiation. The heat transfercoefficient is 22 W/ m2 - o C and surface emissivity is 0.92. The ambient fluid temperature is 20 o C andthe surroundings temperature is 14 oC. Construct a graph of the surface temperature corresponding toheating rates ranging from zero to 100 watts. Assume steady state. Use a simplified model forradiation exchange based on a small gray surface enclosed by a much larger surface at 14 o C.arrow_forward2. A program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). Dashed line indicates - corner of original stock Intended toolpath-tangent - arc entry and exit sized to programmer's judgment 026022 (Slot and Drill Part) (Setup Instructions. (UNITS: Inches (WORKPIECE MAT'L: SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location G54: ( XY 0.0 Upper Left of Fixture ( TOP OF PART 2-0 (Tool List: ) ( T04 T02 0.500 IN 4 FLUTE FLAT END MILL) #4 CENTER DRILL ' T02 0.500 TWIST DRILL N010 GOO G90 G17 G20 G49 G40 G80 G54 N020 M06 T02 (0.5 IN 4-FLUTE END MILL) R0.750 N030 S760 M03 G00 x N040 043 H02 2 Y (P1) (RAPID DOWN -TLO) P4 NO50 MOB (COOLANT ON) N060 G01 X R1.000 N070…arrow_forward6–95. The reaction of the ballast on the railway tie can be assumed uniformly distributed over its length as shown. If the wood has an allowable bending stress of σallow=1.5 ksi, determine the required minimum thickness t of the rectangular cross section of the tie to the nearest 18 in. Please include all steps. Also if you can, please explain how you found Mmax using an equation rather than using just the moment diagram. Thank you!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY