Concept explainers
Interpretation:
Molecular geometry and electron geometry about each non-hydrogen atom in the given molecule is to be predicted using VSEPR theory.
Concept introduction:
Electron geometry and molecular geometry of molecules are determined by using Valence shell electron pair repulsion (VSEPR) theory. According to VSEPR theory, electron geometry describes the orientation of the electron groups about a particular atom and molecular geometry describes the arrangement of atoms about a particular atom.
The number of electron pairs describes the electron and molecular geometry. If all the electron pairs are bonds, then the molecular geometry is the same as the electron geometry. Electron geometry is different from molecular geometry if some electron groups are present as lone pairs. The bond angle depends on the electron geometry around the atom.
Electron geometry and molecular geometry from the number of electron pairs and bond angle according to VSEPR theory are as follows:
Number of Electron Groups |
Number of Bonds |
Number of Lone Pairs |
Bond Angle (o) |
Electron Geometry | Molecular Geometry |
2 | 2 | 0 | 180 | Linear | Linear |
3 | 3 | 0 | 120 | Trigonal planar | Trigonal planer |
3 | 2 | 1 | 120 | Trigonal planar | Bent |
4 | 4 | 0 | 109.5 | Tetrahedral | Tetrahedral |
4 | 4 | 0 | 180 | Linear | Linear |
4 | 2 | 2 | 109.5 | Tetrahedral | Bent |
Answer to Problem 2.2P
According to VSEPR theory, the electron and molecular geometry about each of the non-hydrogen atom in the structure is as follows:
Oxygen = Electron geometry is tetrahedral while molecular geometry is bent.
C1 carbon atom = Electron geometry is tetrahedral while molecular geometry is also tetrahedral.
C2 and C3 carbon atoms = Electron geometry is linear while molecular geometry is also linear.
Explanation of Solution
The given structure for
The structure showing all the atoms and lone pairs is:
There are four non-hydrogen atoms in the above structure. They are numbered from 1 to 4.
There are four groups of electrons around the oxygen atom: two lone pairs of electrons and two single bonds. According to VSEPR theory, its electron geometry is tetrahedral, and its molecular geometry is bent.
There are four groups of electrons around the C1 carbon: four single bonds and no lone pairs of electrons. According to VSEPR theory, its electron geometry is tetrahedral, and its molecular geometry is also tetrahedral.
There are two groups of electrons around the C2 carbon: one triple bond, and one single bond, and no lone pairs of electrons. According to VSEPR theory, its electron geometry is linear, and its molecular geometry is also linear.
There are two groups of electrons around the C3 carbon: one triple bond, one single bond, and no lone pairs of electrons. According to VSEPR theory, its electron geometry is linear, and its molecular geometry is also linear.
The electron geometry and molecular geometry about each non-hydrogen atom in the given molecule is predicted on the basis of VSEPR chart.
Want to see more full solutions like this?
Chapter 2 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- Complete boxes in the flow chart. Draw the structure of the organic compound foundin each layer after adding 3M NaOH and extraction. Make sure to include any charges. Provide explanation on answers.arrow_forward== Vid4Q2 Unanswered ☑ Provide IUPAC name of product in the reaction below A 3,4-dimethylcyclohexene B 1,2-dimethylcyclohexane C 1,2-dimethylcyclohexene D 3,4-dimethylcyclohexane H₂ Pdarrow_forward5. Use the MS data to answer the questions on the next page. 14.0 1.4 15.0 8.1 100- MS-IW-5644 26.0 2.8 27.0 6.7 28.0 1.8 29.0 80 4.4 38.0 1.0 39.0 1.5 41.0 1.2 42.0 11.2 43.0 100.0 44.0 4.3 79.0 1.9 80.0 2.6 Relative Intensity 40 81.0 1.9 82.0 2.5 93.0 8.7 20- 95.0 8.2 121.0 2.0 123.0 2.0 136.0 11.8 0 138.0 11.5 20 40 8. 60 a. Br - 0 80 100 120 140 160 180 200 220 m/z Identify the m/z of the base peak and molecular ion. 2 b. Draw structures for each of the following fragments (include electrons and charges): 43.0, 93.0, 95.0, 136.0, and 138.0 m/z. C. Draw a reasonable a-fragmentation mechanism for the fragmentation of the molecular ion to fragment 43.0 m/z. Be sure to include all electrons and formal charges. 6. Using the values provided in Appendix E of your lab manual, calculate the monoisotopic mass for the pyridinium ion (CsH6N) and show your work.arrow_forward
- Nonearrow_forwardStereochemistry: Three possible answers- diastereomers, enantiomers OH CH₂OH I -c=0 21108 1101 41745 HOR CH₂OH IL Но CH₂OH TIL a. Compounds I and III have this relationship with each other: enantiomers b. Compounds II and IV have this relationship with each other: c. Compounds I and II have this relationship with each other: d. *Draw one structure that is a stereoisomer of II, but neither a diastereomer nor an enantiomer. (more than one correct answer)arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY