Chemistry
Chemistry
4th Edition
ISBN: 9780393919370
Author: Thomas R. Gilbert
Publisher: NORTON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2.23QP
Interpretation Introduction

Interpretation: The exact mass of 48Ti isotope is to be calculated from the given table.

Concept introduction: The exact mass of an isotope is calculated from the formula,

Averageatomicmass=m1×x1+m2×x2+m3×x3+...+mnxn

To determine: The exact mass of 48Ti isotope from the given table.

Expert Solution & Answer
Check Mark

Answer to Problem 2.23QP

Solution

The exact mass of 48Ti isotope is 47.95amu_ .

Explanation of Solution

Explanation

The exact mass of an isotope is calculated from the formula,

Averageatomicmass=m1×x1+m2×x2+m3×x3+...+mnxn (1)

Where,

  • m is mass of an isotope.
  • x is natural abundance expressed in decimals.

The given values and natural abundance in decimals are summarized in Table 1 .

Symbol Exact mass (m) in amu Natural abundance in percentage Natural abundance in decimals (x)
46Ti 45.95263=m1 8.25% 0.0825=x1
47Ti 46.9518=m2 7.44% 0.0744=x2
48Ti m3 73.72% 0.7372=x3
49Ti 48.94787=m4 5.41% 0.0541=x4
50Ti 49.9448=m5 5.18% 0.0518=x5
Average 47.87

Table 1

In Table 1 ,

  • m1 is the exact  mass of 46Ti isotope.
  • m2 is the exact mass of 47Ti isotope.
  • m3 is the exact mass of 48Ti isotope
  • m4 is the exact mass of 49Ti isotope.
  • m5 is the exact mass of 50Ti isotope.
  • x1 is the natural abundance in decimals for 46Ti isotope.
  • x2 is the natural abundance in decimals for 47Ti isotope.
  • x3 is the natural abundance in decimals for 48Ti isotope.
  • x4 is the natural abundance in decimals for 49Ti isotope.
  • x5 is the natural abundance in decimals for 50Ti isotope.

The m3 , exact mass of 48Ti is to be calculated.

Substitute the all values of m,x and average atomic mass in equation (1) .

Averageatomicmass=m1×x1+m2×x2+m3×x3+m4×x4+m5×x547.87=((45.95263×0.0825)+(46.9518×0.0744)+(m3×0.7372)+(48.94787×0.0541)+(49.9448×0.0518))=3.7911+3.4932+0.7372m3+2.6481+2.5871

Simplifying,

47.87=12.5195+0.7372m30.7372m3=47.8712.51950.7372m3=35.3505m3=35.35050.7372

So,

m3=47.95amu

Hence, the exact mass of 48Ti isotope is 47.95amu_ .

Conclusion

The exact mass of 48Ti isotope is 47.95amu_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³
fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10

Chapter 2 Solutions

Chemistry

Ch. 2 - Prob. 2.3VPCh. 2 - Prob. 2.4VPCh. 2 - Prob. 2.5VPCh. 2 - Prob. 2.6VPCh. 2 - Prob. 2.7VPCh. 2 - Prob. 2.8VPCh. 2 - Prob. 2.9QPCh. 2 - Prob. 2.10QPCh. 2 - Prob. 2.11QPCh. 2 - Prob. 2.12QPCh. 2 - Prob. 2.13QPCh. 2 - Prob. 2.14QPCh. 2 - Prob. 2.15QPCh. 2 - Prob. 2.16QPCh. 2 - Prob. 2.17QPCh. 2 - Prob. 2.18QPCh. 2 - Prob. 2.19QPCh. 2 - Prob. 2.20QPCh. 2 - Prob. 2.21QPCh. 2 - Prob. 2.22QPCh. 2 - Prob. 2.23QPCh. 2 - Prob. 2.24QPCh. 2 - Prob. 2.25QPCh. 2 - Prob. 2.26QPCh. 2 - Prob. 2.27QPCh. 2 - Prob. 2.28QPCh. 2 - Prob. 2.29QPCh. 2 - Prob. 2.30QPCh. 2 - Prob. 2.31QPCh. 2 - Prob. 2.32QPCh. 2 - Prob. 2.33QPCh. 2 - Prob. 2.34QPCh. 2 - Prob. 2.35QPCh. 2 - Prob. 2.36QPCh. 2 - Prob. 2.38QPCh. 2 - Prob. 2.39QPCh. 2 - Prob. 2.40QPCh. 2 - Prob. 2.41QPCh. 2 - Prob. 2.42QPCh. 2 - Prob. 2.43QPCh. 2 - Prob. 2.44QPCh. 2 - Prob. 2.45QPCh. 2 - Prob. 2.46QPCh. 2 - Prob. 2.47QPCh. 2 - Prob. 2.48QPCh. 2 - Prob. 2.49QPCh. 2 - Prob. 2.50QPCh. 2 - Prob. 2.51QPCh. 2 - Prob. 2.52QPCh. 2 - Prob. 2.53QPCh. 2 - Prob. 2.54QPCh. 2 - Prob. 2.55QPCh. 2 - Prob. 2.56QPCh. 2 - Prob. 2.57QPCh. 2 - Prob. 2.58QPCh. 2 - Prob. 2.59QPCh. 2 - Prob. 2.60QPCh. 2 - Prob. 2.61QPCh. 2 - Prob. 2.62QPCh. 2 - Prob. 2.63QPCh. 2 - Prob. 2.64QPCh. 2 - Prob. 2.65QPCh. 2 - Prob. 2.66QPCh. 2 - Prob. 2.67QPCh. 2 - Prob. 2.68QPCh. 2 - Prob. 2.69QPCh. 2 - Prob. 2.70QPCh. 2 - Prob. 2.71QPCh. 2 - Prob. 2.72QPCh. 2 - Prob. 2.73QPCh. 2 - Prob. 2.74QPCh. 2 - Prob. 2.75QPCh. 2 - Prob. 2.76QPCh. 2 - Prob. 2.77QPCh. 2 - Prob. 2.78QPCh. 2 - Prob. 2.79QPCh. 2 - Prob. 2.80QPCh. 2 - Prob. 2.81QPCh. 2 - Prob. 2.82QPCh. 2 - Prob. 2.83QPCh. 2 - Prob. 2.84QPCh. 2 - Prob. 2.85QPCh. 2 - Prob. 2.86QPCh. 2 - Prob. 2.87QPCh. 2 - Prob. 2.88QPCh. 2 - Prob. 2.89QPCh. 2 - Prob. 2.90QPCh. 2 - Prob. 2.91QPCh. 2 - Prob. 2.92QPCh. 2 - Prob. 2.93QPCh. 2 - Prob. 2.94QPCh. 2 - Prob. 2.95QPCh. 2 - Prob. 2.96QPCh. 2 - Prob. 2.97QPCh. 2 - Prob. 2.98QPCh. 2 - Prob. 2.99QPCh. 2 - Prob. 2.100QPCh. 2 - Prob. 2.101QPCh. 2 - Prob. 2.102QPCh. 2 - Prob. 2.103QPCh. 2 - Prob. 2.104APCh. 2 - Prob. 2.105APCh. 2 - Prob. 2.106APCh. 2 - Prob. 2.107APCh. 2 - Prob. 2.108APCh. 2 - Prob. 2.109APCh. 2 - Prob. 2.110APCh. 2 - Prob. 2.111APCh. 2 - Prob. 2.112APCh. 2 - Prob. 2.113APCh. 2 - Prob. 2.114APCh. 2 - Prob. 2.115APCh. 2 - Prob. 2.116APCh. 2 - Prob. 2.117APCh. 2 - Prob. 2.118APCh. 2 - Prob. 2.119APCh. 2 - Prob. 2.120APCh. 2 - Prob. 2.121APCh. 2 - Prob. 2.122APCh. 2 - Prob. 2.123APCh. 2 - Prob. 2.125APCh. 2 - Prob. 2.126APCh. 2 - Prob. 2.127AP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY