Applied Fluid Mechanics (7th Edition)
Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.1PP

Define shear stress as it applies to a moving fluid.

Expert Solution & Answer
Check Mark
To determine

Shear stress as it applies to a moving fluid.

Explanation of Solution

Shear pressure is most ordinarily connected to solids. Shear powers acting extraneously to a surface of a strong body cause disfigurement. As opposed to solids that can oppose miss happening, fluids do not have this capacity, and stream under the activity of the power. At the point when the liquid is in movement, shear stresses are created because of the particles in the liquid moving in respect to each other.

For a liquid streaming in a pipe, liquid speed will be zero at the pipe divider. Speed will increase while moving towards the focal point of the pipe. Shear powers are regularly present on the grounds that adjoining layers of the liquid move with various speeds contrast with one another.

By thinking about the speed of this relative movement, shear rate, γ, can be determined. Shear rate is characterized as a proportion of the degree or rate of relative movement between nearby layers of the moving liquid. Shear rate for the liquid streaming between two parallel plates, one moving at a consistent speed, and one is stationary is controlled by:

   γ=uy

Where, uy is the velocity gradient and can be written in the differential form as dudy

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
02:16
Students have asked these similar questions
How can the equivalent point forces of fluids be found?
Define longitudinal and hoop stresses in a thin walled in thin walled pressure vessels. Support your answer with neat sketches.
2.27 Fluids of viscosities µ1 = 0.1 N s/m2 and 42 = 0.15 N s/m2 are contained between two plates (each plate is 1 m? in area). The thicknesses are h1 = 0.5 mm and h2 = 0.3 mm, respectively. And the upper plate moves at a velocity of 1.5 m/s. Determine the force required to move the upper plate and the fluid velocity at the interface between the two fluids. F, V h2 H2 h1 P2.27 Hint: Both Velocity and Shear stress are continuous at the fluid-fluid interface.

Chapter 2 Solutions

Applied Fluid Mechanics (7th Edition)

Ch. 2 - State the standard units for kinematic viscosity...Ch. 2 - State the equivalent units for stoke in terms of...Ch. 2 - Why are the units of stoke and centistoke...Ch. 2 - Define a Newtonian fluid.Ch. 2 - Define a non-Newtonian fluid.Ch. 2 - Give five examples of Newtonian fluids.Ch. 2 - Give four examples of the types of fluids that are...Ch. 2 - Appendix D iS gives dynamic viscosity for a...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D iS gives dynamic viscosity for a...Ch. 2 - Appendix D iS gives dynamic viscosity for a...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - Appendix D gives dynamic viscosity for a variety...Ch. 2 - If you want to choose a fluid that exhibits a...Ch. 2 - Which type of viscosity measurement method uses...Ch. 2 - In the rotating-drum viscometer, describe how the...Ch. 2 - In the rotating-drum viscometer, describe how the...Ch. 2 - What measurements must be taken to determine...Ch. 2 - Define the term terminal velocity as it applies to...Ch. 2 - What measurements must be taken to determine...Ch. 2 - Describe the basic features of the Saybolt...Ch. 2 - Are the results of the Saybolt viscometer tests...Ch. 2 - Does the Saybolt viscometer produce data related...Ch. 2 - Which type of viscometer is prescribed by SAE for...Ch. 2 - Describe the difference between an SAE 20 oil and...Ch. 2 - What grades of SAE oil are suitable for...Ch. 2 - What grades of SAE oil are suitable for...Ch. 2 - If you were asked to check the viscosity of an oil...Ch. 2 - If you were asked to check the viscosity of an oil...Ch. 2 - Prob. 2.53PPCh. 2 - The viscosity of a lubricating oil is given as 500...Ch. 2 - Using the data from Table 2.5. report the minimum,...Ch. 2 - Convert a dynamic viscosity measurement of 4500 cP...Ch. 2 - Convert a kinematic viscosity measurement of 5.6...Ch. 2 - The viscosity of an oil is given as 80 SUS at...Ch. 2 - Convert a viscosity measurement of 6.5x103 Pa.s...Ch. 2 - An oil container indicates that it has a viscosity...Ch. 2 - In a falling-ball viscometer, a steel ball 1.6 mm...Ch. 2 - A capillary tube viscometer similar to that shown...Ch. 2 - In a falling-ball viscometer, a steel ball with a...Ch. 2 - A capillary type viscometer similar to that shown...Ch. 2 - A fluid has a kinematic viscosity of 15.0 mm2/s at...Ch. 2 - A fluid has a kinematic viscosity of 55.3 mm2/s at...Ch. 2 - A fluid has a kinematic viscosity of 188 mm2/s at...Ch. 2 - A fluid has a kinematic viscosity of 244 mm2/s at...Ch. 2 - A fluid has a kinematic viscosity of 153mm2/s at...Ch. 2 - A fluid has a kinematic viscosity of 205mm2/s at...Ch. 2 - An oil is tested using a Saybolt viscometer and...Ch. 2 - An oil is tested using a Saybolt viscometer and...Ch. 2 - Prob. 2.73PPCh. 2 - Prob. 2.74PPCh. 2 - An oil is tested using a Saybolt viscometer and...Ch. 2 - Prob. 2.76PPCh. 2 - Convert all of the kinematic viscosity data in...Ch. 2 - Use a spreadsheet to display the values of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License