POWER SYSTEM ANALYSIS+DESIGN-EBK >I<
6th Edition
ISBN: 9781337259170
Author: Glover
Publisher: INTER CENG
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.13MCQ
To determine
The average reactive power.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Please solve this question step by step handwritten solution and do not use ai or chat gpt please
".I need the correct answers with explanations"
Q1: What is the orientation of voltage regulation value (positive or negative) of
alternator loaded by capacitive load? Explain the effect of armature reaction on
voltage regulation for this load? Draw the load characteristics of alternator for
capacitive, inductive, and inductive loads?
Q2: A 2000 kVA,2200 V, 60 Hz,Y-connected alternator has a resistance of 0.25
between each pair of terminal. A field current of 80 A produces a short circuit current equal to full load
current in each line. The same field current produces an e.m.f of 800 V(L-L) on open circuit .Determine the full
load voltage regulation of alternator at unity p.f?
12. If the length of a transmission line increases, its inductance is
B. decreases
C. Constant
D. None of them
A. increases
13. When the regulation is negative, then receiving end voltage (VR) is.......... than sending and voltage (VS).
B. More
C. Equal
A. Less
D. None of the them
10. If the spacing between the conductors is decrease, the inductance of the line will be:
A. Increase B. decreases C. Not effected
D. Non of them
6. Cables have more effective in...
A. Inductance
B. Capacitance
than over head transmission lines
C. Resistance
D. All of the abov
7. By which of the following methods string efficiency can be equa! 100%
A. Using a guard ring B. Equal insulator voltage C. Using long cross arm D.Non of them
Power system
Prove answer
Chapter 2 Solutions
POWER SYSTEM ANALYSIS+DESIGN-EBK >I<
Ch. 2 - The rms value of v(t)=Vmaxcos(t+) is given by a....Ch. 2 - If the rms phasor of a voltage is given by V=12060...Ch. 2 - If a phasor representation of a current is given...Ch. 2 - Prob. 2.4MCQCh. 2 - Prob. 2.5MCQCh. 2 - Prob. 2.6MCQCh. 2 - Prob. 2.7MCQCh. 2 - Prob. 2.8MCQCh. 2 - Prob. 2.9MCQCh. 2 - The average value of a double-frequency sinusoid,...
Ch. 2 - The power factor for an inductive circuit (R-L...Ch. 2 - The power factor for a capacitive circuit (R-C...Ch. 2 - Prob. 2.13MCQCh. 2 - The instantaneous power absorbed by the load in a...Ch. 2 - Prob. 2.15MCQCh. 2 - With generator conyention, where the current...Ch. 2 - Consider the load convention that is used for the...Ch. 2 - Prob. 2.18MCQCh. 2 - The admittance of the impedance j12 is given by...Ch. 2 - Consider Figure 2.9 of the text, Let the nodal...Ch. 2 - The three-phase source line-to-neutral voltages...Ch. 2 - In a balanced three-phase Y-connected system with...Ch. 2 - In a balanced system, the phasor sum of the...Ch. 2 - Consider a three-phase Y-connected source feeding...Ch. 2 - For a balanced- load supplied by a balanced...Ch. 2 - A balanced -load can be converted to an...Ch. 2 - When working with balanced three-phase circuits,...Ch. 2 - The total instantaneous power delivered by a...Ch. 2 - The total instantaneous power absorbed by a...Ch. 2 - Under balanced operating conditions, consider the...Ch. 2 - One advantage of balanced three-phase systems over...Ch. 2 - While the instantaneous electric power delivered...Ch. 2 - Given the complex numbers A1=630 and A2=4+j5, (a)...Ch. 2 - Convert the following instantaneous currents to...Ch. 2 - The instantaneous voltage across a circuit element...Ch. 2 - For the single-phase circuit shown in Figure...Ch. 2 - A 60Hz, single-phase source with V=27730 volts is...Ch. 2 - (a) Transform v(t)=75cos(377t15) to phasor form....Ch. 2 - Let a 100V sinusoidal source be connected to a...Ch. 2 - Consider the circuit shown in Figure 2.23 in time...Ch. 2 - For the circuit shown in Figure 2.24, compute the...Ch. 2 - For the circuit element of Problem 2.3, calculate...Ch. 2 - Prob. 2.11PCh. 2 - The voltage v(t)=359.3cos(t)volts is applied to a...Ch. 2 - Prob. 2.13PCh. 2 - A single-phase source is applied to a...Ch. 2 - Let a voltage source v(t)=4cos(t+60) be connected...Ch. 2 - A single-phase, 120V(rms),60Hz source supplies...Ch. 2 - Consider a load impedance of Z=jwL connected to a...Ch. 2 - Let a series RLC network be connected to a source...Ch. 2 - Consider a single-phase load with an applied...Ch. 2 - A circuit consists of two impedances, Z1=2030 and...Ch. 2 - An industrial plant consisting primarily of...Ch. 2 - The real power delivered by a source to two...Ch. 2 - A single-phase source has a terminal voltage...Ch. 2 - A source supplies power to the following three...Ch. 2 - Consider the series RLC circuit of Problem 2.7 and...Ch. 2 - A small manufacturing plant is located 2 km down a...Ch. 2 - An industrial load consisting of a bank of...Ch. 2 - Three loads are connected in parallel across a...Ch. 2 - Prob. 2.29PCh. 2 - Figure 2.26 shows three loads connected in...Ch. 2 - Consider two interconnected voltage sources...Ch. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - A balanced three-phase 240-V source supplies a...Ch. 2 - Prob. 2.41PCh. 2 - A balanced -connected impedance load with (12+j9)...Ch. 2 - A three-phase line, which has an impedance of...Ch. 2 - Two balanced three-phase loads that are connected...Ch. 2 - Two balanced Y-connected loads, one drawing 10 kW...Ch. 2 - Three identical impedances Z=3030 are connected in...Ch. 2 - Two three-phase generators supply a three-phase...Ch. 2 - Prob. 2.48PCh. 2 - Figure 2.33 gives the general -Y transformation....Ch. 2 - Consider the balanced three-phase system shown in...Ch. 2 - A three-phase line with an impedance of...Ch. 2 - A balanced three-phase load is connected to a...Ch. 2 - What is a microgrid?Ch. 2 - What are the benefits of microgrids?Ch. 2 - Prob. CCSQCh. 2 - Prob. DCSQ
Knowledge Booster
Similar questions
- ".I need the correct answers with explanations" A power station has a daily load cycle as under: 260 kwh for 6 hours; 200 kwh for 8 hours: 160 kwh for 4 hours, 100 kwh for 6 hours. If the power station is equipped with 4 units of 75 kw each, calculate (i) daily load factor (ii) plant capacity factor and (iii) daily requirement of fuel in kg if the calorific value of fuel used were 10,000 kcal/kg.arrow_forward"I need the correct answers with explanations" Pick up the correct answer 1. The area under the daily load curve gives A. average load in kw B. units generated in kwh 2. the minimum phase-neutral voltage at which corona A. Visual critical voltage B. Receiving voltage C. plant capacity in kw D. Maximum demand in kw occurs is C. String voltage D. Critical disruptive voltage. 3. If the length of a transmission line increases, its inductance is B. Decreases C. Constant A. Increases 4. Photo cells are connected in parallel in order to D. None of them A. Increase voltage rating B. Increase current rating C. Increase life cells. D. All of the them 5. Which of the following is a high head turbine? A. Pelton turbine B. Francis turbine 6. Best diversity factor will be at: C. Kaplan turbine D. Propeller turbine A. diversity factor 1 7. When the voltage regulation is positive, then receiving voltage is ...... than sending voltage A. Less B. More C. Equal D. None of the them 8. Fill factor of solar…arrow_forwardConsider the system shown in Fig. Q4(b). Draw a Bode diagram of the open-loop transfer function, and determine the value of the gain K such that the phase margin is 50° . Also, obtain the gain margin of the system with the determined value of gainarrow_forward
- ".I need the correct answers with explanations" Answer True or False and correct errors if found 1. In a certain Op-Amp. if Ad-3500, Ac-0.35, the CMRR=100dB. 2. The voltage series feedback can increase both input and output impedances. 3. A two-pole Sallen-Key high-pass filter contains one capacitor and two resistors. 4. The main feature of a crystal oscillator is the high frequency operation. Each transistor in a class B power amplifier conducts for the entire input cycle. The Q-point must be centered on the load line for maximum class A output signal swing. 7. The differentiator Op-Amp can convert the triangle waveform into sinewave. Class AB power amplifier eliminates crossover distortion found in pure class A. 9. Wien-bridge oscillators are based on positive feedback circuits. 10. The band-reject filter is composed of multiplication of LPF and HPF.arrow_forward".I need the correct answers with explanations" Pick up the correct answer 1. Station that contain boiler is: A. hydro station B. Diesel station 2. Taking into account cost, most of the D. All of them C. Steam power station high-voltage transmission lines are OC. Either of the above D. None of the ab 3. If the maximum load is equal to plant capacity. The plant capacity factor is: A. Underground. B. Overhead C. >1 D. <1 A. 1 4. Five photocells are connected in parallel, 2V for each cell. The output voltage is A.2.5 V B. zero B. 10 V C.2V) D. 5 V 5. Sum of continuous ratings of all the equipment connected to electric power system is defined as: A. Maximum demand B. Connected load C. Daily average load D. Load variation 6. Cables have more effective in.............. than over head transmission lines B. Capacitance C. Resistance D. All of the abov A. Inductance 7. By which of the following methods string efficiency can be equal. 100% A. Using a guard ring B. Equal insulator voltage C.…arrow_forwardQ3/A unity-feedback system with the forward transfer function G(S)= K S(S+7) is operating with a closed-loop step response that has 15% overshoot. Do the following: a. Evaluate the steady-state error for a unit ramp input. b. Design a lag compensator to improve the steady-state error by a factor of 20 to get a new dominant closed-loop poles S-3.4+ j5.63. place the pole of the lag compensator at s=-0.01 c. Design a lag compensator using OP amp if R1= 100KS2 R2=10 KS2 and R3= 10Karrow_forward
- Find the mathematical expression in fourier series for this output below shown in the image. This must have the terms ao, ak and bkarrow_forwardPlease solve this question step by step handwritten solution and do not use ai or chat gpt please thank youarrow_forwardPlease solve this question step by step hand written solution and do not use ai or chat gpt thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning

Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning